八年级数学下学期复习(四)
班级 姓名 学号 得分
一、选择题(每小题3分,共24分)
1.下列命题中正确的是( )
A.对角线互相平分的四边形是菱形 B.对角线互相平分且相等的四边形是菱形
C.对角线互相垂直的四边形是菱形 D.对角线互相垂直平分的四边形是菱形
2.某花木场有一块等腰梯形ABCD的空地,其各边的中点分别是E、F、G、H测量得对角线AC=10米,现想用篱笆围成四边形EFGH场地,则需篱笆总长度是( )
A. 40米 B. 30米 C.20米 D.10米
3.在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=10,BD=6,则该梯形的面积是( )
A. 30
B. 15
C.
D.60
4.如图,已知矩形ABCD,R、P分别是DC、BC上
的点,E、F分别是AP、RP的中点,当P在BC
上从B向C移动而R不动时,那么下列结论成立
的是( )
A. 线段Ef的长逐渐增大.B.线段Ef的长逐渐减少
C.线段EF的长不改变. D.线段EF的长不能确定.
5.在平行四边形、矩形、正方形、等腰梯形、直角
梯形中,不是轴对称图形的有( )
A. 1个 B.2个 C.3个
D.4个
6.如图, ABCD中的两条对角线相交于O点,通过旋转、
平移后,图中能重合的三角形共有( )
A.2对 B.3对 C.4对 D.5对
7.菱形的周长为高的8倍,则它的一组邻角是( )
A.30°和150° B.45°和135° C.60°和120° D.80°和100°
8.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为( )
A.
B.2
C.
D.
二、填空题(每小题3分,共18分)
9.在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE= 度
10.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF
是平行四边形,还需要增加的一个条件是 . (填一个即可)
(9题图) (10题图)
11.如图,一个平行四边形被分成面积为、
、
、
四个小平行四边形,当CD沿AB自左向右在平行四边形内平行滑动时,则
与
的大小关系为 .
12.若梯形的面积为12c,高为3cm,则此中位线长为
.
13.对角线 的四边形是菱形.
14.在梯形ABCD中,DC∥AB,DC+CB=AB,且∠A=51°,则∠B的度数是 .
三.解答题
|
15.(10分)已知:如图,在平行四边形ABCD中,
E、F是对角线AC上的两点,且AE=CF.
求证:DE=BF E
16.(18分)已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,
垂足分别是E、F,且BF=CE.
求证:(1)△ABC是等腰三角形;
(2)当∠A=90°时,试判断四边形AFDE是
怎样的四边形,证明你的判断结论.
17.(10分)如图,已知直线m∥n,A、B为直线n上的两点,C、P为直线m上的两
![]() |
点.(1)请写出图中面积相等的各对三角形:
.
(2)如果A、B、C为三个定点,点P在m上移动
那么无论P点移动到任何位置时总有
与△ABC的面积相等;
理由是: .
18.(10分)如图,在菱形ABCD中,E为AD中点,
EF⊥AC交CB的延长线于F.
求证:AB与EF互相平分
19.(14分)如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF,
![]() |
请回答下列问题:
(1) 求证:四边形ADEF是平行四边形;
(2) 当△ABC满足什么条件时,四边形ADEF是矩形.
测试题参考答案
1~8 D C A C
B C A A
9~14 20 BE=DF(不唯一) =
4 互相垂直平分 78°
15. 略
16. (1) 略
(2)AFDE是正方形
17.(1)△ABC和△ABP, △AOC和△BOP,△CPA和△CPB;
(2) △ABP,
(3)同底等高
18.略
19. (1)略
(2)150°