当前位置:首页 -初中数学试卷 - 初中二年级数学试题 - 正文*

八年级数学上质量检测卷

2014-5-11 0:16:08下载本试卷

八年级数学上质量检测卷

班级:     学号:       姓名:     

一、     选择题:(每题3分,共30分。)

1.如右图,AB∥CD,如果∠1是∠2的2倍,那么∠1等于( )

 (A)60°  (B)90°  (C)120°  (D) 150°

2.等腰三角形的两条边长是2和5,则它的周长是( )

A.12      C.9     

B.14      D.9或14

3.∠B的相邻外角是100°,要使△ABC为等腰三角形,底角∠A的度数是( )

A.80°     B. 50°     C.80°或50°    D.60°

4.下列判断正确的是(  )

A.4a>3a    B.≥a     C.a>—a       D.a>

5.一组数据x1,x2,x3,x4,x5的平均数是x,另一组数据2x1+5,2x2+5,2x3+5,2x4+5,2x5+5的平均数是(  ) 

A .x      B. 2x      C. 2x+5      D.10x+25

6.数据x,0,x,4,6,1中,中位数恰好是x,则整数x可能的值有( )个

A.1       B.2       C.3        D.4

7.已知不等式组  的解集为X>2,则(   )

       x>m

A.m>2   B.m<2  C.m≥2   D.m≤2                       

8.一个直六棱柱的主视图和俯视图如右图所示,则它的左视图是(  )


     A        B        C        D

9.不等式3x+1<m的正整数解是1,2,3,则整数m的最小值是(   )

A.10    B.11    C.12    D.13

10.已知△ABC的三边分别为a,b,c,满足(a-24)2+(b-25)2+c2+49=14c,则△ABC的形状为( )

A.锐角三角形   B.直角三角形    C.钝角三角形   D.形状不确定

二、  填空题(每小题3分,共30分)

11.满足不等式-1≤X<的自然数x的个数为     

12.已知直角三角形两条边的长分别为3cm和4cm,则第三边长为:    cm。

13.等腰三角形一腰上的中线,将它的周长分成15cm和6cm两部分,则这个等腰三角形的底边上长是     cm。

14.数据1,3,2,5,4的方差是      ,标准差是    .

15.如图,已知在△ABC中,BC=3,∠ACB和∠ABC的两条角平分线相交于点O,OE∥AB,OF∥AC,则△OEF的周长是____。

16.如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是________。

         

 

17.一鱼塘中大约有鱼2000尾,现分三次捕捞出30条鱼,称得其质量如下表,问鱼塘中所有鱼的质量大约是    千克.

第一次捕捞

第二次捕捞

第三次捕捞

条数

8

10

12

平均质量

2.8千克

3.4千克

3.2千克

              x-a≥0

18.已知关于x的不等式组   的整数解共有6个,则a的取值范围是                

              3-2x>-1

19.如图,直线a、b、c表示三条互相交叉的公路,

  现要建一个货物中转站,要求它到三条公路的

  距离相等,则可供选择的地址有     处。

20.如图,长方体的长、宽、高分别为8cm,4cm,5cm。一只蚂蚁沿着长方体的表面从点A爬到点B。则蚂蚁爬行的最短路径的长是       cm

三、解答题(6分+10分+7分+8分+9分)

21.画出下列几何体的三种视图.(6分)

 

22.解下列不等式(组),并分别在数轴上表示出它们的解集.(10分)

(1)         (2)

23.如图,AD是等腰△ABC的底边BC上的中线,过点D作DE∥AB,交AC于点E,判断△ADE是不是等腰三角形,并说明理由。(7分)

24.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:

(1) 请你根据上图填写下表:(4分)

销售公司

平均数

方差

中位数

众数

9

9

17.0

8

(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:

①从平均数和方差结合看;(2分)

②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力). (2分)

25.如图所示,细心观察图形,认真分析各式,解答问题。

+1=2 ,S1=;   

 +1=3,S2=;             …

 +1=4,S2=

……      ……

(1)  请用含有n(n是正整数)的等式表示上述变化规律。(2分)

(2)  推算出OA10的长。(3分)

(3)  求出S12 +S22+S32+……S102的值。(4分)