当前位置:首页 -初中数学试卷 - 初中二年级数学试题 - 正文*

图形与坐标

2014-5-11 0:16:09下载本试卷

第六章 图形与坐标

班级          姓名           学号       

一、       选择题(每题3分,共30分)

1.电影票上8排12号简记为(   )

A.812      B.128      C.(8,12)    D.(12,8)

2.如图,点A与点B的横坐标(   )

A.相同        B.相隔3个单位长度 

C.相隔1个单位长度  D.无法确定

3.在直角坐标系中,点A(2,1)向左平移2个

单位长度后的坐标为(  )

A.(4,1) B.(0,1) C.(2,3)  D.(2,-1)

4.观察图(1)与(2)中的两个三角形,可把(1)中的三角形的三个顶点,怎样变化就得到(2)中的三角形的三个顶点(  )

A.每个点的横坐标加上2           B.每个点的纵坐标加上2

C.每个点的横坐标减去2         

D.每个点的纵坐标减去2

5.已知点P的坐标为(-3,-4),则点P到y轴的距离为(   )

A.-3    B.3     C.4     D.-4

6.若点P在x轴的上方和y轴的左方,到每条坐标轴的距离为4,则点P的坐标为(  )

A.(4,4)   B.(-4,-4)   C.(-4,4)   D.(4,-4)

7.点M(-1,2)与点N关于y轴对称,则点N的坐标为(  )

A.(1,-2)   B.(-1,-2)    C.(1,2)   D.(2,-1)

8.在平面直角坐标系中,点P(-2,3)向右平移3个单位后的坐标为(  )

A.(3,6)   B.(1,3)    C.(1,6)   D.(3,3)

9.∆ABC各顶点的横坐标不变,纵坐标分别加3,连结三个点所成三角形是由∆ABC(  )

A.向左平移3个单位所得          B.向右平移3个单位所得

C.向上平移3个单位所得          D.向下平移3个单位所得

10.已知正方形OABC各顶点坐标为O(0,0),A(1,0),B(1,1)C(0,1),若P为坐标平面上的点,且∆POA、∆PAB、∆PBC、∆PCO都是等腰三角形,问P点可能的不同位置数是(  )

A.1      B.5       C.9       D.13

二、填空题(每题3分,共30分)

11.点P(a,b)在x轴上,则a      ,b       .

12.点P(3a-9,a+1)在第二象限,则a的取值范围为     

13.小明站在旗杆的北偏东40°方向上,且距离旗杆80米,则旗杆应在小明

      位置。

14.点M(3,-2)关于x轴对称点的坐标为      

15.在直角坐标系中,若一个正方形,每个顶点到横轴、纵轴的距离都是6,则此正方形的四个顶点坐标分别为             

16.若点A(x,0)与点B(2,0)的距离等于3,则x=       .

17.对于边长为4的正∆ABC,以BC所在直线为x轴,以边BC的中垂线为y轴建立直角坐标系,那么点A的坐标是      

18.某市地图上有A和B两个生活小区,A区在B区的西南方向,且相距B区2000米,小华以B区为坐标原点,以正东方向为x轴正方向,以正北方向为y轴正方向,以100米为单位长度建立直角坐标系,则点A区坐标为      

19.如图所示,小明告诉小华图中A、B两点坐标分别是(-3,6),(3,5),小华立刻说出了点C的坐标,则他说的点C的坐标为      

20.已知点A(a,6)和B(2,6),且AB平行于x轴,则a的取值范围为      

三、解答题(21题、22题每题6分,23—26题每题7分,共40分)

21.建立适当的平面直角坐标系,并在图中描出坐标是(2,3),(-2,3),(3,-2),(5,1),(0,-4),(-3,0)的点。

22.如图,小明从家到学校要穿过一个居民小区,小区的道路均是正南或正东方向,请你帮小明设计一条从家到学校的路线,并在图上画出,用坐标描述他的行走路线。

 

 

 

 

 

 

 

 

 

 

 

23.在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来,形成图案I,

(1)作出该图案关于y轴对称的图案II;

(2)将所得的图案II沿x轴向上翻折180°后得到一个新的图案III,试写出它的各顶点坐标;

(3)观察图案I与III,比较各自顶点的坐标和图案位置,你能得到什么结论?

24.试判断以A(-1,-1),B(5,-1),C(2,2)为顶点的三角形的形状。

25.如图所示是一艘船在平面直角坐标系内的位置,

(1)写出图中所标出的各个点的坐标;

(2)如果船朝东航行6个单位长度,再向北平移4个单位长度,则变化后船所在位置的各点坐标为怎样?

26.已知在直角坐标系中,点A(4,0),点B(0,3),若有一个直角三角形与Rt∆ABO全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标。(不必写出计算过程)

四、附加题(每题10分,共20分)

27.如图所示,正∆ABC在平面直角坐标系中按顺时针方向滚动,已知点A与坐标原点重合,正∆ABC的边长为2,

(1)求出点B及点C的坐标;

(2)把∆ABC绕点C旋转30°后,点B所在位置的坐标是什么?

(3)三角形ABC滚动360°后,点A,点B、点C分别位于什么位置?


28.∆ABC先向下平移3个单位长度,再绕原点顺时针旋转180°,得如图所示的∆A´B´C´,试确定∆ABC的位置,并定出顶点坐标。