第十一章 一次函数练习题 A卷
一、填空题(每题2分,共20分)
1.在匀速运动公式中,
表示速度,
表示时间,
表示在时间
内所走的路程,则变量是____,常量是___.
2.函数中自变量x的取值范围是___________.
3.若关于x的函数是一次函数,则m= ,n
.
4.正比例函数,当m
时,y随x的增大而增大.
5.若函数图象经过点(1,2),则m=
.
6.已知函数,当
时,函数图象在第四象限.
7.分别用x和y表示等腰三角形的顶角和底角的度数, y与x之间的函数解析式为______.
8.王华和线强同学在合作电学实验时,记录下电流I(安培)与电阻R(欧)有如下对应关系.观察下表:
R | …… | 2 | 4 | 8 | 10 | 16 | …… |
I | …… | 16 | 8 | 4 | 3.2 | 2 | …… |
你认为I与R间的函数关系式为________;当电阻R=5欧时,电流I=_______安培.
9.拖拉机开始工作时,油箱中有油40升,如果每小时耗油5升,如图是拖拉机工作时,油箱中的余油量Q(升)与工作时间 (小时)的函数关系图像,那么图中?应是_______.
10.在某公用电话亭打电话时,需付电话费y(元)与通话时间 x(分钟)之间的函数关系用图象表示如图.小明打了2分钟需付费______元;小莉打了8分钟需付费_______元.
(第8题图) (第10题图)
二、选择题 (每题3分,共24分)
11.函数是研究 ( )
A.常量之间的对应关系的 B.常量与变量之间的对应关系的
C.变量与常量之间对应关系的 D.变量之间的对应关系的
12.下列给出的四个点中,不在直线y=2x-3上的是 ( )
A.(1, -1) B.(0, -3) C.(2, 1) D.(-1,5)
13. 点A(1,m)在函数y=2x的图象上,则m的值是 ( )
A.1
B.2
C.
D.0
14.若是正比例函数,则b的值是 ( )
A.0 B.
C.
D.
15.当时,函数
的函数值为
( )
A.-25 B.-7 C. 8 D.11
16.函数y=(k-1)x,y随x增大而减小,则k的范围是 ( )
A. B.
C.
D.
17.如图,OA、BA分别表示甲、乙两名学生运动的一次函数,图中S和t分别表示运动路程和时间,根据图象判断快者比慢者每秒快 ( )
A. B.
C.
D.
18.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )
A. B. C. D.
三、解答题(共56分)
19.(8分)已知直线经过点(1,2)和点(
,4),求这条直线的解析式.
20.(7分)将函数y=2x+3的图象平移,使它经过点(2,-1).求平移后得到的直线的解析式.
21.(8分)甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元.求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.
22.(9分)已知直线. (1) 求已知直线与y轴的交点A的坐标; (2) 若直线
与已知直线关于y轴对称,求k与b的值.
23.(12分)一天上午8时,小华去县城购物,
到下午2时返回家,结合图象回答:
(1)小华何时第一次休息?
(2)小华离家最远的距离时多少?
(3)返回时平均速度是多少?
(4)请你描述一下小华购物的情况.
24.(12分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码与鞋子的长(cm)之间存在着某种联系,经过收集数据,得到下表:
鞋长x(cm) | … | 22 | 23 | 24 | 25 | 26 | … |
码数y | … | 34 | 36 | 38 | 40 | 42 | … |
请你代替小明解决下列问题:
(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上?
(2)猜想y与x之间满足怎样的函数关系式,并求出y与x之间的函数关系式,验证这些点的坐标是否满足函数关系式.
(3)当鞋码是40码时,鞋长是多长?
四、附加题(做对另加10分,若整卷总分超过100分以100分计算)
25.已知一次函数y=kx+b的自变量的取值范围是―3≤x≤6,相应的函数值的范围是
―5≤y≤―2,求这个函数的解析式.
答案
1.
s和t;v 2. x≥5 3. 2,≠-1 4. >
5. -2 6. 0,
7. y=90°-0.5x 8. I=
,6.4 9. 8 10. 0.7, 2.2 11.D 12.D 13.B 14.B 15.D 16.D 17. B 18. C 19.
20. y=2x-5
21. y=0.9x+0.2,4.7 22.(1)A(0,1) (2)y=-2x+1
23.(1)上午9点;(2)30千米;(3)15千米/小时;(4)略
24.(1)在直线上;(2)一次函数,;(3)当y=40时,x=25
25.
或
第十一章 一次函数 B卷
一、填空题(每题2分,共20分)
1.在圆的周长公式C=2πr中,变量是________,常量是_________.
2.在函数中,自变量
的取值范围是_________.
3.函数中,当x=___________时,函数的值等于2.
4.一次函数的图象经过点(-2,3)与(1 ,-1),它的解析式是___ _____.
5.将直线y=3x向下平移5个单位,得到直线 ;将直线y=-x-5向上平移5个单位,得到直线 .
6.东方超市鲜鸡蛋每个0.4元,那么所付款y元与买鲜鸡蛋个数x(个)之间的函数关系式是____________.
7.平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是__________.
8.出租车收费按路程计算,3km内(包括3km)收费8元;超过3km每增加1km加收1元,则路程x≥3km时,车费y(元)与x (km)之间的函数关系式是________________.
9.已知点P(3a – 1,a + 3)是第二象限内坐标为整数的点,则整数a的值是_______.
10.若直线和直线
的交点坐标为(
),则
____________.
二、选择题(每题3分,共24分)
11.下列函数中,与y=x表示同一个函数的是 ( )
A.y= B.y= C.y=()2 D.y=
12.下列关系式中,不是函数关系的是 ( )
A.y=(x<0) B.y=±(x>0) C.y=(x>0) D.y=-(x>0)
13.若m<0, n>0, 则一次函数y=mx+n的图象不经过 ( )
A.第一象限 B. 第二象限 C.第三象限 D.第四象限
14.已知函数y=3x+1,当自变量增加m时,相应的函数值增加( )
A.3m+1 B.3m C.m D.3m-1
15.汽车由A地驶往相距120km的B地,它的平均速度是30km/h,则汽车距B地路程s(km)与行驶时间t(h)的函数关系式及自变量t的取值范围是( )
A.S=120-30t (0≤t≤4) B.S=120-30t (t>0)
C.S=30t (0≤t≤40) D.S=30t (t<4)
16.已知函数,当
时,y的取值范围是 ( )
A. B.
C.
D.
17.小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( )
![]() |
A. B. C. D.
18.当
时,函数y=ax+b与
在同一坐标系中的图象大致是( )
A. B. C. D.
三、解答题(第19题6分,其余每题10分,共56分)
19.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.
(1)在这个变化过程中,自变量和因变量分别是什么?
(2)如果地表温度为2℃,计算当x为5km时地壳的温度.
20.已知与
成正比例,且
时,
.
(1)求与
的函数关系式; (2)当
时,求
的值;
(3)将所得函数图象平移,使它过点(2,-1).求平移后直线的解析式.
21.已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.
22.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).
(1)小强让爷爷先上多少米?
(2)山顶离山脚的距离有多少米?谁先爬上山顶?
(3)小强经过多少时间追上爷爷?
23. 如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.
⑴ 写出y与x之间的函数关系式及x的取值范围;
⑵ 说明是否存在点P,使四边形APCD的面积为1.5?
24. k在为何值时,直线2k+1=5x+4y与直线 k=2x+3y的交点在第四象限?
四、附加题(做对另加10分,若整卷总分超过100分以100分计算)
25.有一条直线y=kx+b,它与直线交点的纵坐标为5,而与直线y=3x-9的交点的横坐标也是5.求该直线与两坐标轴围成的三角形面积.
答案 1.C、r, 2π
2. x≥2 3.x=2或-2 4. 5.
6. y=0.4x (x≥0) 7. y=15-x ( x<15) 8. y=x+5 9. -2,-1,0 10. 16
11. D 12. B 13. C 14. B 15.A 16.C 17.D 18.B
19.(1)自变量是地表以下的深度x,因变量是所达深度的温度y;(2)19.5
20.(1)y=2x+3;(2)2;(3)y=2x-5 21.y=0.3x+6 22. (1)60米;(2)300米,小强;(3)8分钟
23. (1) y=4-x(0≤x≤2) (2) 当y=4-x=1.5时,x=2.5不在0≤x≤2,因此不存在点P使四边形APCD的面积为1.5
24.由题意得 解得
因为两直线交点在第四象限,所以x>0,y<0,即
解得
故
时,两直线交点在第四象限.
25.提示:先求出直线的解析式为y=x+1,再求出它与两坐标轴的交点,进而求得三角形的面积为0.5
第十一章 一次函数 C卷
1.直线与x轴交点的坐标是________,与y轴交点的坐标是_______.
2.把直线向上平移
个单位,可得到函数__________________.
3.若点P1(–1,3)和P2(1,b)关于y轴对称,则b= .
4.若一次函数y=mx-(m-2)过点(0,3),则m= .
5.函数的自变量x的取值范围是
.
6.如果直线经过一、二、三象限,那么
____0 (“<”、“>”或“=”).
7.若直线
和直线
的交点在第三象限,则m的取值范围是________.
8.函数y= -x+2的图象与x轴,y轴围成的三角形面积为_________________.
18.已知,直线y=2x+3与直线y=-2x-1.
(1)求两直线与y轴交点A,B的坐标;
(2)求两直线交点C的坐标;
(3)求△ABC的面积.
答案
1. (3,0)(0,9) 2.y=0.5x-0.5 3. 3 4.–1 5.x≥5 6. >
7. m<-1 8. 2 18. (1) A(0,3),B(0,-1); (2) C(-1,1); △ABC的面积==2