当前位置:首页 -初中数学试卷 - 初中二年级数学试题 - 正文*

八年级(下)第一次月考数学试卷

2014-5-11 0:16:45下载本试卷

外国语学校八年级(下)第一次阶段考试

数学试题

(时间:90分钟   总分:120分)

一、选择题(每小题3分,共30分)

1. 在,9 x +,中,是分式的个数是(  )

A.5       B.4          C.3        D.2

2. 下列各式中,正确的是(  )

A.  B.  C.  D.=2

3. 下列关于分式的判断,正确的是(  )

A.当x=2时,的值为零    B.无论x为何值,的值总为正数

C.无论x为何值,不可能得整数值   D.当x3时,有意义

4. 把分式中的分子分母的xy都同时扩大为原来的2倍,那么分式的值将是原分式值的(  )

A.2倍       B.4倍        C.一半      D.不变

5. 若方程有增根,则增根可能为(    )

A.0     B.2    C.0或2    D.1

6.下列函数表达式中,均表示自变量,不是反比例函数的是(   )

  A.    B.  C.    D.

7.如图所示的图象的函数关系式只能是(   )

  A.     B.    C.    D.

8.已知函数的图象经过点(2,3),下列说法正确的是(   )

  A.yx的增大而减小       B.函数的图象只在第一象限

  C.当x<0时,必有y<0      D.点(-2,-3)不在此函数的图象上

9.在函数(k>0)的图象上有三点A1(x1, y1 )、A2(x2, y2)、A3(x3, y3 ),已知x1x2<0<x3,则下列各式中,正确的是 (  )

 A.y1y2y3  B.y3y2y1  C. y2y1y3  D.y3y1y2

10.如图,函数ykxk)与在同一坐标系中,图象只能是下图中的(  )


二、填空题(每小题3分,共30分)

11.不改变分式的值,使分子、分母的第一项系数都是正数,则.

12.已知=5,则的值是   

13.用科学记数法表示-0.=_____________________.

14.若分式的值为正,则的取值范围等于_____________.

15.点(,5)在反比例函数的图象上,则=________,该反比例函数的图象位于第__________象限,在每个象限内的增大而____________.

16.已知点A(,)在第二象限,且m为整数,则过A的反比例函数的关系式为__________________.

17.某食用油生产厂要制造一种容积为5升(1升=1分米3)的圆柱形油桶,油桶的底面面积s(米2)与桶高h(米)的函数关系式为     _______    .

18. 点P在函数的图象上,A在X轴的正半轴上,O为坐标原点,PA=PO,∠APO=Rt∠,则△POA的面积=_____________________.

19.正比例函数的图象与反比例函数的图象的一个交点是A,点A的横坐标是2,则此反比例函数的关系式为_________________.

20.已知直线轴于点A,交轴于点B,交双曲线于点D,DC⊥轴,垂足为C,且,则=_______________.

三、解答题(共60分)

21.(每小题4分,共16分)化简下列各式:

(1) +.      (2).

(3). (4)

22.(每小题4分,共8分)解下列方程:

(1)=3.         (2).

23.(6分)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.

24.(10分)某空调厂的装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m(单位: 台/天)与生产的时间t(单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?

25.(8分)阅读材料题

对于题目“若方程的解是正数,求a的取值范围。”有同学作了如下解答:

解:去分母,得 

化简,得 

所以   

欲使方程的解为正数,必须,得

所以当时,方程的解是正数。

上述解法是否有误?若有错误,请指出错误原因,并写出正确解法;

若无错误,请说明每一步变形的依据。

26.(12分)如图,正方形OABC的面积为9,点O为坐标原点,点B在函数k>0,x>0)的图象上,点Pmn)是函数k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴的垂线,垂足分别为EF,并设矩形OEPF和正方形OABC不重合部分的面积为S.(1)求B点坐标和k的值;(2)当S=时,求点P的坐标;

(3)写出S关于m的函数关系式.