当前位置:首页 -初中数学试卷 - 初中三年级数学试题 - 正文*

九年级数学下二次函数测试题

2014-5-11 0:17:18下载本试卷

九年级数学下二次函数测试题

姓名          学号       得分     

A卷(100分)

一、选择题:(把正确答案的序号填在下表中,每题3分,共36分)

1、抛物线的顶点坐标是(  )

文本框: 班级 姓名 (A) (-2,3)   (B)(2,3)  (C)(-2,-3)  (D)(2,-3)

2、抛物线的形状相同,而开口方向相反,则=(   )

(A)    (B)      (C)       (D)

3.与抛物线的形状大小开口方向相同,只有位置不同的抛物线是(  )

A. B. C. D.

4.二次函数的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是(  )

A.=4    B. =3    C. =-5    D. =-1。

5.抛物线的图象过原点,则为(  )

A.0       B.1       C.-1       D.±1

6.把二次函数配方成顶点式为(  )

A. B.    C.    D.

7.二次函数的图象如图所示,则这四个式子中, 值为正数的有(  )A.4个     B.3个     C.2个   D.1个

8、已知二次函数的图象如图所示,给出以下结论

:① ;② ;③;④.

其中所有正确结论的序号是(    )

A. ③④   B. ②③   C. ①④   D. ①②                        

9.直角坐标平面上将二次函数y=-2(x-1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为(  )A.(0,0)    B.(1,-2)     C.(0,-1)   D.(-2,1)

10.函数的图象与轴有交点,则的取值范围是(  )

A.  B.  C.      D.

11.已知反比例函数的图象如右图所示,则二次函数的图象大致为(  )

D.

 

C.

 

B.

 

A.

 
12、若抛物线的开口向下,顶点是(1,3),的增大而减小,则的取值范围是(   )(A)     (B)    (C)    (D)

二、填空题:(每空3分,共30分)

1.已知抛物线,请回答以下问题:

⑴ 它的开口向     ,对称轴是直线      ,顶点坐标为     

⑵ 图象与轴的交点为         ,与轴的交点为     

2.抛物线过第二、三、四象限,则  0,  0,  0.

3.抛物线可由抛物线  平移  个单位得到.

4.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为          

5.对称轴是轴且过点A(1,3)、点B(-2,-6)的抛物线的解析式为          

6.已知二次函数,则当  时,其最大值为0.

7.二次函数的值永远为负值的条件是  0,  0.

8如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)、点B(3,0)和点C(0,-3),一次函数的图象与抛物线交于B、C两点。

⑴二次函数的解析式为          

⑵当自变量   时,两函数的函数值都随增大而增大.

⑶当自变量    时,一次函数值大于二次函数值.

⑷当自变量   时,两函数的函数值的积小于0.

9.已知抛物线轴的交点都在原点的右侧,则点M()在第  象限.                                                                                                                                                                                                                            

10.已知抛物线轴交于点A,与轴的正半轴交于B、C两点,且BC=2,S△ABC=3,则=   =   

三、解答题:(1-2每题10分,3题14分共34分)

1. 某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请回答

下列问题(1)当销售单价为每千克55元时,计算销售量和月利润.

(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式.

(3)销售单价定为多少元时,获得的利润最多?

文本框: 班级 姓名 2、已知二次函数 的图象经过点(1,0)和(-5,0)两点,顶点纵坐标为,求这个二次函数的解析式。

24.已知,如图,直线经过两点,它与抛物线在第一象限内相交于点P,又知的面积为,求的值;

B卷(50分)

一、填空题(15分)

1、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第5个数等于      

第1行  1

第2行  -2    3

第3行  -4    5   -6

第4行   7   -8    9   -10

第5行   11  -12    13   -14   15

2、将抛物线向下平移3个单位,再向左平移4个单位得到抛物线,则原抛物线的顶点坐标是     

3、函数时,的取值范围是         

二、(9分)已知抛物线轴交于A、B两点,且点A在轴的负半轴上,点B在轴的正半轴上。(1)求实数的取值范围;(2)设OA、OB的长分别为,且=1∶5,求抛物线的解析式。

如图12,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.

  (1)求的值及这个二次函数的关系式;

(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;

(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.