当前位置:首页 -初中数学试卷 - 初中三年级数学试题 - 正文*

九年级数学中考模拟试卷三

2014-5-11 0:17:31下载本试卷

九年级数学中考模拟试卷三

一、填空题:(每题3分  共36分)

1、下列各式 ① ② ③  ④

 ⑥其中是一次函数的有(    ),是正比例函数的有(    ) (填序号)

2、中,自变量的取值范围是(       )

3、已知点其中是一元二次方程的两根,则点M的坐标为(        )

4、若一次函数的图象经过原点且的增大而减小,则 应满足的条件是(         )

5、函数如果则它的图象经过(      )象限,的增大而(     )  

6、在⊙O中,已知∠AOB= 则弦AB所对的圆周角是(      )

7、已知是锐角,且 则的取值范围是(       )

8、已知是方程的一根,则(   )(为锐角)

9、如图:∠BAC=  ADBCE为⊙O内接五边形,则∠D+∠E的度数为(     )

                   A

10、如图,在⊙O中,      D                   B

直径AB=10 弦AD=8              E      O

P是弦AD上一个动点,                

那么OP的取值范围是                A         D

(          )      B        C        P

                               

  (第9题)       (第10题)

二、选择题(每题3分,共30分)

11、四边形ABCD是⊙O的内接四边形,则∠A∠B∠C∠D的度数比依次是(   )

  (A)1:2:3:4  (B)6:7:8:9  (C)4:1:3:2  (D)14:3:1:12

12、已知∠A 是锐角,且 则有(    )

 (A)  (B) (C) (D)

13、判断下列数量关系中,①正方形周长与它的一边长 ②圆周长和它的半径 ③圆的面积和它的周长 ④矩形面积一定时,长y与宽x ⑤买15斤梨售价25元,买x斤梨的售价y(元)与斤数x  ⑥某人年龄与体重,其中是正比例函数关系的有(    )

(A)①②④   (B)①②⑤    (C)①④⑤   (D)①③⑤

14、已知方程有两个相等的实数根,则锐角等于(    )

(A)     (B)      (C)    (D)以上都不对

15、若为一次函数,则m的值为(   )

(A)m=2或  (B)  (C)   (D)

16、点N在轴左侧,且到轴的距离为4,到轴距离为3的点N的坐标是(   )

(A)  (B) (C)  (D)

17、下列各命题中不是真命题的有(    )

(A)相等的弧所对的弦相等  (B)相等的弦所对的弧相等 

(C) 圆内接平行四边形是矩形(D) 圆内接梯形是等腰梯形

18、已知平面直角坐标系中,有三点   则△ABC的形状是(  )

 (A)等腰三角形  (B)直角三角形  (C)等边三角形  (D)等腰直角三角形

19、星期天晚饭后,小红从家里出去散步,右图描述了她散步过程中离家的距离s(m)与所用时间t(min)的函数关系,依据图象,下面的描述符合小红散步情景的是(   )

(A) 从家出发到了一个公共阅报栏看了一会报就回家了  

(B) 从家出发到了公共阅报栏,看了一会报后继续向前走了一段,然后回家了 

  (C) 从家出发一直散步(没有停留)然后回家了 

(D) 从家出发散了一会步就找同学去了,18分钟后开始返回

20、⊙O的弦AB、CD的延长线相交于P,若∠P∠AMC则∠ABC=(  )

(A)  (B)  (C)  (D)  A

                                 B

                              M      P

(第19题)   4  10 15  18      (第20题)   C     D

三、解答题:(21、22、23各6分,24、25各8分)

21、国庆期间,几名教师包租一辆车前往合肥游览,面包车的租价为180元,出发时又增加两名教师,结果每一位教师比原来少分摊了3元车费,求参加旅游的教师共多少人?

22、已知一次函数的图象与平行且过点

(1)求这个函数的解析式 

(2)设此函数图象与轴、轴交点为A、B 求△AOB的面积

23、已知AB是⊙O的直径,弦CD与AB相交于E,∠ADC= ∠ACD=求∠AEC的度数                                A

                                   O

                             D    E       C

                                B

24、已知:C为⊙O外一点过点C的两条直线分别交⊙O于E、D、F、B(如图),⊙O的直径AB⊥DE于H 求证:(1)∠CFE=∠DFB (2) C

                                E     F

                             A

                                   O

                                        B

                              D

25、某移动通讯公司开设了两种通讯业务“全球通”使用者先缴50元月租费,然后每通话1分钟再付话费0.4元,“快捷通”不缴月租费,每通话1分钟,付话费0.6元(均指市内通话)若一个月内通话分钟,两种方式的话费分别为元与

(1)  写出之间的函数关系式

(2)一月内通话多少分钟,两种话费一样多?

(3)某人估计一个月内通话300分钟,选哪一种方式更合算些?

四、思考题:(10分)

26、已知:函数 当,此函数图象与轴、轴交点分别为A、B 

(1)求值,并求出点A与点B的坐标 

(2)试问分别过△ABO的三个顶点中的一点,且把该三角形面积分成1:3两部分的直线共有几条?并求出其中任意一条直线的解析式(每多写出一条直线的解析式可以加5分)(附加题总分不超过20分)

答案

一、填空题:(每空3分,共计36分)

1、②④   2、3<x≤2  3、(3,-1)或(-1,3)  4、m>2且n=-3  

5、一、三、四  增大  6、   7、  8、 

9、 10、3≤OP≤5

二、选择题(每题3分,共计30分)

  DBBAC   DBDBB

三、解答题:

21、解:设参加旅游的教师共

  依题意得:                      3分

  解这个方程             

  整理,得    

解得:                                  5分

经检验:  是原方程的解,

不合题意,舍去∴ 

答:参加旅游的教师共12人。                                   6分

22、解:(1)设所求的解析式为

 由已知得 ∴                        1分

代入得

这个函数解析式为                           3分

(2)∵ 

∴图象与轴、轴的交点为                  5分

                         6分

23、解:连结BD、BC

∵AB为⊙O直径∴∠ADB=∠ACB=                          1分

∵∠ABC=∠ADC= ∠ABD=∠ACD=                      3分

∴∠BAD==∠BCD ∴∠AEC=∠ ABC +∠BCD=   6分

24、证明:(1)连结DB ∵BDEF为⊙O内接四边形

        ∴∠CFE=∠EDB                                   1分

又∵直径AB⊥弦ED ∴弧BE=弧BD

∴∠EDB=∠DFB                              3分

∴∠CFE=∠DFB                                   4分

(2)∵∠CFE=∠DFB ∠CEF=∠DBF 

∴△CEF∽△DBF                                    6分

                    8分

25、解(1)依题意                        2分

(2)依题意 解得          4分

∴通话250分钟话费一样多                              5分

(3)当时,(元)

 (元)                         7分

∴选择全球通更合算些                                  8分

四、思考题

解(1)把 代入中得

     ∴                                       2分

 ∴ 当

即与轴、轴交点                        4分

(2)直线共有六条(如图)                                   7分

①   设直线交OB于点D,且OD:DB=1:3

∵OB=4 ∴OD=1∴D(0,1)

的解析式为

 D(0,1)代入得 解得

∴直线的解析式为                                10分

②设直线交OB于D,则点D(0,3)

D(0,3) 代入解得

∴直线的解析式为                               15分

同法可求过点B交OA于点D两条直线的解析式为

  :     :                        20分

以上任写一条直线解析式均可