当前位置:首页 -初中数学试卷 - 初中三年级数学试题 - 正文*

初三数学中考模拟试卷

2014-5-11 0:17:32下载本试卷

初三数学中考模拟试卷

                  姓名___________得分___________

HI,亲爱的同学,你好!今天是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!

一、细心选一选(10×2=20分)

题号

1

2

3

4

5

6

7

8

9

10

答案

1.化简的结果是(  )

  A.    B.-   C.    D.

2.如果分式的值为零,那么x等于(  )

A.-1   B.1   C.-1或1   D.1或2

3.方程x2 = 2x的解是(  )

  A、x=2  B、x1=,x2= 0   C、x1=2,x2=0    D、x = 0

4.用换元法解方程(x2+x)2+(x2+x)=6时,如果设x2+x=y,那么原方程可变形为( )

A、y2+y-6=0  B、y2-y-6=0   C、y2-y+6=0 D、y2+y+6=0

5.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,那么x满足的方程是(   )

  A.x2+130x-1 400=0   B.x2+65x-350=0

  C.x2-130x-1 400=0   D.x2-64x-1 350=0

6.半径为1的圆中,圆心角为120°的扇形面积为 (   )

(A)  (B) (C)  (D)

7.如图,已知AB是⊙O的直径,CD是弦且CD⊥AB,

BC=6,AC=8,则sin∠ABD的值是(   )

(A)  (B) (C)  (D)     

8.如图,已知BC是⊙O的直径,AD切⊙O于A,

  若∠C=40°,则∠DAC=(   )

 (A)50°(B)40° (C)25° (D)20°

9.如果一个圆柱的侧面积为16,那么这个圆柱的高l与底面半径r之间函数关系的大致图象是(    )


10.如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是(   )

(A)     (B)

       

(C)   (D)

            

        

二、专心填一填(10×2=20分)

11.已知a+=5,则=________.

12.已知x=+1,则代数式的值为___________.

13.“在三角形中至少有一个角不大于60°”用反证法来证明时,第一步应假设:_______________________________________________

14. 一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是      

15.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A、B、C三人之外;(2)C作案时总得有A作从犯;(3)B不会开车。在此案中能肯定的作案主犯是___

16.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=,且DE=1则边BC的长为_____________。

 


17.如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′,C′D′的位置时,顶点B从开始到结束所经过的路径长为______________.

18.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象经过第一象限;乙:函数的图象经过第三象限;丙:在每个象限内,yx的增大而减小.请你根据他们的叙述构造满足上述性质的一函数       ________

19.已知开口向上的抛物线y=a(x+2)(x-8)与x轴交于A,B两点,与y轴交于C点,若∠ACB=90°,则a=_______.

20.在直线l上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_____________。

 
三、耐心答一答

21. (10分)有一道题“先化简,再求值:,

其中。”

小玲做题时把“”错抄成了

”,但她的计算结果也是正确的,请你解释这是怎么回事?

22. (10分)已知关于x的一元二次方程x2-(k+1) x-6=0的一个根是2,

求方程的另一根和k的值

 
23. (10分)有两个可以自由转动的均匀转盘A、B,分别

被分成4等份、3等份,并在每份内均标有数字,如图所示。

王扬和刘菲同学用这两个转盘做游戏,游戏规则如下:

①分别转动转盘A与B;

②两个转盘停止后,将两个指针所指份内的数字相加(如果

指针恰好停在等分线上,那么重转一次,直到指针指向某一

份为止)。③如果和为0,王扬获胜;否则刘非获胜。

(1)    用列表法(或树状图)求王扬获胜的概率;

(2)    你认为这个游戏对双方公平吗?请说明理由。

24. (10分)如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,                              

(1)    若AB=6,求线段BP的长;(6分)

(2)    观察图形,是否有三角形与ΔACQ全等?并证明你的结论,(4分)

 
解:

 
25. (10分)如图,点A,B,C,D在⊙O上,弦AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长.

26. (10分)已知线段AC=8,BD=6.

(1)已知线段AC垂直于线段BD.设图6—1、图6—2和图6—3中的四边形ABCD的面积分别为S1S2S3,则S1=     S2=     S3=    

(2)如图6—4,对于线段AC与线段BD垂直相交(垂足O不与点ACBD重合)的任意情形,请你就四边形ABCD面积的大小提出猜想,并证明你的猜想;

(3)当线段BDAC(或CA)的延长线垂直相交时,猜想顺次连接点ABCDA所围成的封闭图形的面积是多少?

27.(10分) 如图,已知二次函数的图像与x轴交于点A、点B(点B在X轴的正半轴上),与y轴交于点C,其顶点为D,直线DC的函数关系式为,又tan∠OBC=1,

(1)    求a、k的值;(4分)

(2)    探究:在该二次函数的图像上是否存在点P(点P与点B、C补重合),使得ΔPBC是以BC为一条直角边的直角三角形?若存在,求出点P的坐标,若不存在,请你说明理由(6分)

 解: