当前位置:首页 -初中数学试卷 - 初中三年级数学试题 - 正文*

高级中等学校招生统一考试数学试卷(课标B卷)

2014-5-11 0:17:35下载本试卷

高级中等学校招生统一考试数学试卷(课标B卷)

考生须知

1.本试卷分为第Ⅰ卷、第Ⅱ卷,共10页,共九道大题,25个小题,满分120分.考试时间120分钟.

2.在试卷密封线内认真填写区(县)名称、毕业学校、姓名、报名号、准考证号.

3.考试结束,请将本试卷和答题卡一并交回.

第Ⅰ卷(机读卷  共32分)

考生

须知

1.第Ⅰ卷共2页,共一道大题,8个小题.

2.试题答案一律填涂在机读答题卡上,在试卷上作答无效.

一、选择题(共8个小题,每小题4分,共32分.)

下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.

1.的相反数是(  )

A.         B.        C.         D.

2.青藏高原是世界上海拔最高的高原,它的面积约为平方千米.将用科学记数法表示应为(  )

A.          B.           C.       D.

3.在函数中,自变量的取值范围是(  )

A.          B.          C.          D.

4.如图,,点的延长线上,

,则的度数为(  )

A.          B.           

C.           D.

5.小芸所在学习小组的同学们,响应“为祖国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷,奶奶们学习英语日常用语.他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32,那么这组数据的众数和中位数分别是(  )

A.32,31         B.32,32         C.3,31          D.3,32

6.把代数式分解因式,结果正确的是(  )

A.             B.          

C.         D.

7.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为(  )

A.            B.            C.            D.

8.将如右图所示的圆心角为的扇形纸片围成圆锥形纸帽,使扇形的两条半径重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是(  )

高级中等学校招生统一考试数学试卷(课标B卷)

II(非机读卷  共88分)

考生

须知

1.第Ⅱ卷共8页,共八道大题,17个小题.

2.除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、圆珠笔.

二、填空题(共4个小题,每小题4分,共16分.)

9.若关于的一元二次方程有实数根,则的取值范围是         

10.若,则的值为             

文本框: 11.用“”定义新运算:对于任意实数,都有.例如,,那么           

为实数时,           

12.如图,在中,分别是的中点,上的点,连结.若,则图中阴影部分的面积为           

三、解答题(共5个小题,共25分)

13.(本小题满分5分)

计算:

解:

14.(本小题满分5分)

解不等式组

解:

15.(本小题满分5分)

解分式方程

解:

16.(本小题满分5分)

已知:如图,,点,点上,

求证:

证明:

17.(本小题满分5分)

已知,求代数式的值.

解:

四、解答题(共2个小题,共11分.)

18.(本小题满分5分)

已知:如图,在梯形中,于点

求:的长.

解:

19.(本小题满分6分)

已知:如图,内接于,点的延长线上,

(1)求证:的切线;

(2)若,求的长.

1)证明:

2)解:

五、解答题(本题满分5分)

20.根据北京市统计局公布的2000年,2005年北京市常住人口相关数据,绘制统计图表如下:

年份

大学程度人数(指大专及以上)

高中程度人数(含中专)

初中程度人数

小学程度人数

其他人数

2000年

233

320

475

234

120

2005年

362

372

476

212

114

请利用上述统计图表提供的信息回答下列问题:

(1)从2000年到2005年北京市常住人口增加了多少万人?

(2)2005年北京市常住人口中,少儿(岁)人口约为多少万人?

(3)请结合2000年和2005年北京市常住人口受教育程度的状况,谈谈你的看法.

解:(1

(2

(3

六、解答题(共2个小题,共9分.)

21.(本小题满分5分)

在平面直角坐标系中,直线绕点顺时针旋转得到直线.直线与反比例函数的图象的一个交点为,试确定反比例函数的解析式.

解:

22.(本小题满分4分)

请阅读下列材料:

  问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.

  小东同学的做法是:设新正方形的边长为.依题意,割补前后图形的面积相等,有,解得.由此可知新正方形的边长等于两个正方形组

成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.


  请你参考小东同学的做法,解决如下问题:

  现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.

说明:直接画出图形,不要求写分析过程.

解:

七、解答题(本题满分6分)

23.如图1,的平分线,请你利用该图形画一对以所在直线为对称轴的全等三角形.

  请你参考这个作全等三角形的方法,解答下列问题:

(1)如图2,在中,是直角,分别是的平分线,相交于点.请你判断并写出之间的数量关系;

(2)如图3,在中,如果不是直角,而(1)中的其他条件不变,

请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

解:画图:


(1)之间的数量关系为         

(2)

八、解答题(本题满分8分)

24.已知抛物线轴交于点,与轴分别交于两点.

(1)求此抛物线的解析式;

(2)若点为线段的一个三等分点,求直线的解析式;

(3)若一个动点的中点出发,先到达轴上的某点(设为点),再到达抛物线的对称轴上某点(设为点),最后运动到点.求使点运动的总路径最短的点,点的坐标,并求出这个最短总路径的长.

解:(1

(2

(3

九、解答题(本题满分8分)

25.我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:

(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;

(2)探究:当等对角线四边形中两条对角线所夹锐角为时,这对角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.

解:(1

(2

高级中等学校招生统一考试数学试卷(课标B卷)

答案及评分参考

阅卷须知:

  1.一律用红钢笔或红圆珠笔批阅,按要求签名.

  2.第I卷是选择题,机读阅卷.

  3.第II卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.

I(机读卷 共32分)

一、选择题(共8个小题,每小题4分,共32分.)

题号

1

2

3

4

5

6

7

8

答案

II(非机读卷 共88分)

二、填空题(共4个小题,每小题4分,共16分.)

题号

9

10

11

12

答案

2

10

26

30

三、解答题(本题共30分,每小题5分.)

13.解:

  ························································································· 4分

  .···································································································· 5分

14.解:由不等式解得  .························································ 2分

    由不等式解得  .····················································· 4分

    则不等式组的解集为  .····················································· 5分

15.解:.······················································· 2分

    .···································································· 3分

           .··········································································· 4分 

    经检验是原方程的解.

    所以原方程的解是.········································································ 5分

16.证明:因为

.····················································································· 1分

.····················································································· 2分

中,

·················································································· 3分

所以.···································································· 4分

所以.·················································································· 5分

17.解:

    ··········································································· 2分

    .····························································································· 3分

    当时,原式.························· 5分

四、解答题(共2个小题,共11分)

18.解:如图,过点于点.············································· 1分

  因为

  所以四边形是平行四边形.································································· 2分

  所以

  由

  得

  在中,

  由

  求得.································································································ 3分

  所以.·············································································· 4分

  在中,

    

  求得.·························································································· 5分

19.解:(1)证明:如图,连结

  因为

  所以

  故.································· 1分

  又

  所以是等边三角形.

  故.··························································································· 2分

  因为

  所以

  所以的切线.················································································ 3分

(2)解:因为

  所以垂直平分

  则.·························································································· 4分

  所以.································································································ 5分

  在中,

  由正切定义,有

  所以.··························································································· 6分

五、解答题(本题满分5分)

20.解:(1)(万人).···························································· 1分

  故从2000年到2005年北京市常住人口增加了154万人.

  (2)(万人).

  故2005年北京市常住人口中,少儿(岁)人口约为157万人.············· 3分

  (3)例如:依数据可得,2000年受大学教育的人口比例为,2005年受大学教育的人口比例为.可知,受大学教育的人口比例明显增加,教育水平有所提高.·········································· 5分

六、解答题(共2个小题,共9分)

21.解:依题意得,直线的解析式为.······················································· 2分

    因为在直线上,

    则.································································································ 3分

    即

    又因为的图象上,

    可求得.························································································· 4分

    所以反比例函数的解析式为.························································ 5分

22.解:所画图形如图所示.

说明:图4与图5中所画图形正确各得2分.分割方法不唯一,正确者相应给分.

七、解答题(本题满分6分.)

23.解:图略.画图正确得1分.

  (1)之间的数量关系为.·············································· 2分

  (2)答:(1)中的结论仍然成立.

  证法一:如图4,在上截取,连结.·································· 3分

  因为为公共边,

  可证

  所以.···················· 4分

  由分别是的平分线,

  可得

  所以

所以.······················································································· 5分

为公共边,可得

所以

所以.····························································································· 6分

证法二:如图5,

过点分别作于点于点.································· 3分

因为,且分别是的平分线,

所以可得的内心.··············· 4分

所以

又因为

所以.····················································· 5分

因此可证

所以.····························································································· 6分

八、解答题(本题满分8分)

24.解:(1)根据题意,

所以

解得

所以抛物线解析式为.······················································ 2分

(2)依题意可得的三等分点分别为

设直线的解析式为

当点的坐标为时,直线的解析式为;························ 3分

当点的坐标为时,直线的解析式为.······················ 4分

(3)如图,由题意,可得

关于轴的对称点为

关于抛物线对称轴的对称点为

连结

根据轴对称性及两点间线段最短可知,的长就是所求点运动的最短总路径的长.  5分

所以轴的交点为所求点,与直线的交点为所求点.

可求得直线的解析式为

可得点坐标为点坐标为.················································· 7分

由勾股定理可求出

所以点运动的最短总路径的长为.······························ 8分

九、解答题(本题满分8分)

25.解:(1)略.写对一种图形的名称给1分,最多给2分.

(2)结论:等对角线四边形中两条对角线所夹锐角为时,这对角所对的两边之和大于或等于一条对角线的长.······················································································································· 3分

已知:四边形中,对角线交于点

求证:

证明:过点,在上截取,使

连结.····························································································· 4分

,四边形是平行四边形.

所以是等边三角形,.······················································· 6分

所以

①当不在同一条直线上时(如图1),

中,有

所以.······················································· 7分

②当在同一条直线上时(如图2),

因此.······················································· 8分

综合①、②,得

即等对角线四边形中两条对角线所夹角为时,这对角所对的两边之和大于或等于其中一条对角线的长.