高级中等学校招生统一考试数学试卷(课标B卷)
| 考生须知 | 1.本试卷分为第Ⅰ卷、第Ⅱ卷,共10页,共九道大题,25个小题,满分120分.考试时间120分钟. 2.在试卷密封线内认真填写区(县)名称、毕业学校、姓名、报名号、准考证号. 3.考试结束,请将本试卷和答题卡一并交回. |
第Ⅰ卷(机读卷 共32分)
| 考生 须知 | 1.第Ⅰ卷共2页,共一道大题,8个小题. 2.试题答案一律填涂在机读答题卡上,在试卷上作答无效. |
一、选择题(共8个小题,每小题4分,共32分.)
下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.
1.
的相反数是( )
A.
B.
C.
D.![]()
2.青藏高原是世界上海拔最高的高原,它的面积约为
平方千米.将
用科学记数法表示应为( )
A.
B.
C.
D.![]()
3.在函数
中,自变量
的取值范围是( )
A.
B.
C.
D.![]()
4.如图,
,点
在
的延长线上,
若
,则
的度数为( )
A.
B.
C.
D.![]()
5.小芸所在学习小组的同学们,响应“为祖国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷,奶奶们学习英语日常用语.他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32,那么这组数据的众数和中位数分别是( )
A.32,31 B.32,32 C.3,31 D.3,32
6.把代数式
分解因式,结果正确的是( )
A.
B.
C.
D.![]()
7.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为( )
A.
B.
C.
D.![]()
8.将如右图所示的圆心角为
的扇形纸片
围成圆锥形纸帽,使扇形的两条半径
与
重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是( )
高级中等学校招生统一考试数学试卷(课标B卷)
第II卷(非机读卷 共88分)
| 考生 须知 | 1.第Ⅱ卷共8页,共八道大题,17个小题. 2.除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、圆珠笔. |
二、填空题(共4个小题,每小题4分,共16分.)
9.若关于
的一元二次方程
有实数根,则
的取值范围是 .
10.若
,则
的值为 .
11.用“
”定义新运算:对于任意实数
,
,都有![]()
.例如,![]()
,那么![]()
;
当
为实数时,![]()
.
12.如图,在
中,
,
,
分别是
,
的中点,
,
为
上的点,连结
,
.若
,
,
,则图中阴影部分的面积为
.
三、解答题(共5个小题,共25分)
13.(本小题满分5分)
计算:
.
解:
14.(本小题满分5分)
解不等式组![]()
解:
15.(本小题满分5分)
解分式方程
.
解:
16.(本小题满分5分)
已知:如图,
,点
,点
在
上,
,
.
求证:
.
证明:
17.(本小题满分5分)
已知
,求代数式
的值.
解:
四、解答题(共2个小题,共11分.)
18.(本小题满分5分)
已知:如图,在梯形
中,
,
,
,
于点
,
,
.
求:
的长.
解:
19.(本小题满分6分)
已知:如图,
内接于
,点
在
的延长线上,
,
.
(1)求证:
是
的切线;
(2)若
,
,求
的长.
(1)证明:
(2)解:
五、解答题(本题满分5分)
20.根据北京市统计局公布的2000年,2005年北京市常住人口相关数据,绘制统计图表如下:
| 年份 | 大学程度人数(指大专及以上) | 高中程度人数(含中专) | 初中程度人数 | 小学程度人数 | 其他人数 |
| 2000年 | 233 | 320 | 475 | 234 | 120 |
| 2005年 | 362 | 372 | 476 | 212 | 114 |
请利用上述统计图表提供的信息回答下列问题:
(1)从2000年到2005年北京市常住人口增加了多少万人?
(2)2005年北京市常住人口中,少儿(
岁)人口约为多少万人?
(3)请结合2000年和2005年北京市常住人口受教育程度的状况,谈谈你的看法.
解:(1)
(2)
(3)
六、解答题(共2个小题,共9分.)
21.(本小题满分5分)
在平面直角坐标系
中,直线
绕点
顺时针旋转
得到直线
.直线
与反比例函数
的图象的一个交点为
,试确定反比例函数的解析式.
解:
22.(本小题满分4分)
请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
小东同学的做法是:设新正方形的边长为
.依题意,割补前后图形的面积相等,有
,解得
.由此可知新正方形的边长等于两个正方形组
成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.
![]() |
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
说明:直接画出图形,不要求写分析过程.
解:
七、解答题(本题满分6分)
23.如图1,
是
的平分线,请你利用该图形画一对以
所在直线为对称轴的全等三角形.
请你参考这个作全等三角形的方法,解答下列问题:
(1)如图2,在
中,
是直角,
,
,
分别是
,
的平分线,
,
相交于点
.请你判断并写出
与
之间的数量关系;
(2)如图3,在
中,如果
不是直角,而(1)中的其他条件不变,
请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
解:画图:
![]() |
(1)
与
之间的数量关系为 .
(2)
八、解答题(本题满分8分)
24.已知抛物线
与
轴交于点
,与
轴分别交于
,
两点.
(1)求此抛物线的解析式;
(2)若点
为线段
的一个三等分点,求直线
的解析式;
(3)若一个动点
自
的中点
出发,先到达
轴上的某点(设为点
),再到达抛物线的对称轴上某点(设为点
),最后运动到点
.求使点
运动的总路径最短的点
,点
的坐标,并求出这个最短总路径的长.
解:(1)
(2)
(3)
九、解答题(本题满分8分)
25.我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为
时,这对
角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
解:(1)
(2)
高级中等学校招生统一考试数学试卷(课标B卷)
答案及评分参考
阅卷须知:
1.一律用红钢笔或红圆珠笔批阅,按要求签名.
2.第I卷是选择题,机读阅卷.
3.第II卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
第I卷(机读卷 共32分)
一、选择题(共8个小题,每小题4分,共32分.)
| 题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 答案 | A | C | A | D | B | C | D | B |
第II卷(非机读卷 共88分)
二、填空题(共4个小题,每小题4分,共16分.)
| 题号 | 9 | 10 | 11 | 12 | |
| 答案 |
| 2 | 10 | 26 | 30 |
三、解答题(本题共30分,每小题5分.)
13.解:![]()
························································································· 4分
.···································································································· 5分
14.解:由不等式
解得
.························································ 2分
由不等式
解得
.····················································· 4分
则不等式组的解集为
.····················································· 5分
15.解:
.······················································· 2分
.···································································· 3分
.··········································································· 4分
经检验
是原方程的解.
所以原方程的解是
.········································································ 5分
16.证明:因为
,
则
.····················································································· 1分
又
,
则
.····················································································· 2分
在
与
中,
·················································································· 3分
所以
.···································································· 4分
所以
.·················································································· 5分
17.解:![]()
··········································································· 2分
.····························································································· 3分
当
时,原式
.························· 5分
四、解答题(共2个小题,共11分)
18.解:如图,过点
作
交
于点
.············································· 1分
因为
,
所以四边形
是平行四边形.································································· 2分
所以
.
由
,
得
.
在
中,
,
,
由
,
求得
.································································································ 3分
所以
.·············································································· 4分
在
中,
,
.
求得
.·························································································· 5分
19.解:(1)证明:如图,连结
.
因为
,
所以
.
故
.································· 1分
又
,
所以
是等边三角形.
故
.··························································································· 2分
因为
,
所以
.
所以
是
的切线.················································································ 3分
(2)解:因为
,
所以
垂直平分
.
则
.·························································································· 4分
所以
.································································································ 5分
在
中,
,
由正切定义,有
.
所以
.··························································································· 6分
五、解答题(本题满分5分)
20.解:(1)
(万人).···························································· 1分
故从2000年到2005年北京市常住人口增加了154万人.
(2)
(万人).
故2005年北京市常住人口中,少儿(
岁)人口约为157万人.············· 3分
(3)例如:依数据可得,2000年受大学教育的人口比例为
,2005年受大学教育的人口比例为
.可知,受大学教育的人口比例明显增加,教育水平有所提高.·········································· 5分
六、解答题(共2个小题,共9分)
21.解:依题意得,直线
的解析式为
.······················································· 2分
因为
在直线
上,
则
.································································································ 3分
即
.
又因为
在
的图象上,
可求得
.························································································· 4分
所以反比例函数的解析式为
.························································ 5分
22.解:所画图形如图所示.
说明:图4与图5中所画图形正确各得2分.分割方法不唯一,正确者相应给分.
七、解答题(本题满分6分.)
23.解:图略.画图正确得1分.
(1)
与
之间的数量关系为
.·············································· 2分
(2)答:(1)中的结论
仍然成立.
证法一:如图4,在
上截取
,连结
.·································· 3分
因为
,
为公共边,
可证
.
所以
,
.···················· 4分
由
,
分别是
的平分线,
可得
.
所以
.
所以
.······················································································· 5分
由
及
为公共边,可得
.
所以
.
所以
.····························································································· 6分
证法二:如图5,
过点
分别作
于点
,
于点
.································· 3分
因为
,且
,
分别是
,
的平分线,
所以可得
,
是
的内心.··············· 4分
所以
,
.
又因为
,
所以
.····················································· 5分
因此可证
.
所以
.····························································································· 6分
八、解答题(本题满分8分)
24.解:(1)根据题意,
,
所以![]()
解得
所以抛物线解析式为
.······················································ 2分
(2)依题意可得
的三等分点分别为
,
.
设直线
的解析式为
.
当点
的坐标为
时,直线
的解析式为
;························ 3分
当点
的坐标为
时,直线
的解析式为
.······················ 4分
(3)如图,由题意,可得
.
点
关于
轴的对称点为
,
点
关于抛物线对称轴
的对称点为
.
连结
.
根据轴对称性及两点间线段最短可知,
的长就是所求点
运动的最短总路径的长. 5分
所以
与
轴的交点为所求
点,与直线
的交点为所求
点.
可求得直线
的解析式为
.
可得
点坐标为
,
点坐标为
.················································· 7分
由勾股定理可求出
.
所以点
运动的最短总路径
的长为
.······························ 8分
九、解答题(本题满分8分)
25.解:(1)略.写对一种图形的名称给1分,最多给2分.
(2)结论:等对角线四边形中两条对角线所夹锐角为
时,这对
角所对的两边之和大于或等于一条对角线的长.······················································································································· 3分
已知:四边形
中,对角线
,
交于点
,
,
且
.
求证:
.
证明:过点
作
,在
上截取
,使
.
连结
,
.····························································································· 4分
故
,四边形
是平行四边形.
所以
是等边三角形,
.······················································· 6分
所以
.
①当
与
不在同一条直线上时(如图1),
在
中,有
.
所以
.······················································· 7分
②当
与
在同一条直线上时(如图2),
则
.
因此
.······················································· 8分
综合①、②,得
.
即等对角线四边形中两条对角线所夹角为
时,这对
角所对的两边之和大于或等于其中一条对角线的长.

