初中毕业生学业考试数学试卷
说明:全卷共8页,考试时间90分钟,满分120分.
题号 | 一 | 二 | 三 | 总分 | |||||||||
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | ||||
得分 |
一、选择题:每小题3分,共15分;每小题给出四个答案,其中有一个是正确的,把所选答案的编号填写在题目后面的括号内.
1.等于( )
A.2 B. C.
D.
2.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )
3.我市大部分地区今年5月中、下旬的天气情况是:前5天小雨,后5天暴雨.那么能反映我市主要河流水位变化情况的图象大致是( )
4.如图1,把矩形
沿
对折,若
,则
等于( )
A. B.
C. D.
5.在同一平面直角坐标系中,直线与双曲线
的交点个数为( )
A.0个 B.1个 C.2个 D.无法确定
二、填空题:每小题3分,共30分;答案填写在该题的横线上.
6.我市约有495万人口,用科学记数法表示为 人.
7.如果一个几何体的主视图是等腰三角形,那么这个几何体可以是 .(填上满足条件的一个几何体即可)
8.一个袋中装有6个红球、4个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出 球的可能性最大.
9.计算:
.
10.计算:
.
11.将抛物向左平移1个单位后,得到的抛物线的解析式是 .
12.当
时,分式
的值为零.
13.能使平行四边形
为正方形的条件是
.(填上一个符合题目要求的条件即可)
14.如图2,两个半圆中,小圆的圆心在大
的直径
上,
长为4的弦与直径
平行且与小半圆相切,那么圆中阴影部
分面积等于 .
15.如图3,已知
的周长为
,分别连接
的中点得
,再连接
的中点
得
,再连接
的中点
得
,这样延续下去,最后得
.
设的周长为
,
的周长为
,
的周长为
,
的周长为
,则
.
三、解答题:本大题有10小题,共75分.
16.本小题满分6分.
因式分解:.
17.本小题满分6分.
解不等式组:
18.本小题满分6分.
如图4是某文具店在2005年卖出供学生使用的甲、乙、丙三种品牌科学计算器个数的条形统计图,试解答下面问题:
(1)求卖出甲、乙、丙三种科学计算器的个数的频率;
(2)根据以上统计结果,请你为该文具店进货提出一条合理化建议.
![]() |
19.本小题满分6分.
如图5,已知的顶点
的坐标分别是
.
(1)作出关于原点
中心对称的图形;
(2)将
绕原点
按顺时针方向旋转
后得到
,画出
,并写出点
的坐标.
20.本小题满分7分.
小明与小华在玩一个掷飞镖游戏,如图甲是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部分时,小明胜,否则小华胜(没有掷中靶或掷到边界线时重掷).
(1)不考虑其他因素,你认为这个游戏公平吗?说明理由.
(2)请你在图乙中,设计一个不同于图
甲的方案,使游戏双方公平.
![]() |
21.本小题满分7分.
梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆
的高度.如图7,当阳光从正西方向照射过来时,旗杆
的顶端
的影子落在教学楼前的坪地
处,测得影长
与地面的夹角
.在同一时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆
的高度.(可能用到的数据:
,结果保留两个有效数字)
D
22.本小题满分8分.
某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天比甲工厂多加工20件.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
23.本小题满分8分.
用两个全等的正方形和
拼成一个矩形
,把一个足够大的直角三角尺的直角顶点与这个矩形的边
的中点
重合,且将直角三角尺绕点
按逆时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形的两边
相交于点
时,如图
甲,通过观察或测量
与
的长度,你能得到什么结论?并证明你的结论.
(2)当直角三角尺的两直角边分别与
的延长线,
的延长线相交于点
时(如
图乙),你在图
甲中得到的结论还成立吗?简要说明理由.
24.本小题满分10分.
如图9,直线的解析式为
与
轴,
轴分别交于点
.
(1)求原点到直线
的距离;
(2)有一个半径为1的
从坐标原点出发,以每秒1个单位长的速度沿
轴正方向运动,设运动时间为
(秒).当
与直线
相切时,求
的值.
25.本小题满分11分.
如图10,点在抛物线
上,过点
作与
轴平行的直线交抛物线于点
,延长
分别与抛物线
相交于点
,连接
,设点
的横坐标为
,且
.
(1)当时,求点
的坐标;
(2)当为何值时,四边形
的两条对角线互相垂直;
(3)猜想线段与
之间的数量关系,并证明你的结论.
![]() |
初中毕业生学业考试
数学试卷参考答案及评分意见
一、选择题:每小题3分,共15分
1.D 2.B 3.B 4.A 5.C
二、填空题:每小题3分,共30分
6.; 7.圆锥或正三棱锥或正四棱锥; 8.红; 9.3 10.
;
11.; 12.
; 13.
且
或
且
等;
14.; 15.
.
三、解答下列各题:共75分
16.解:原式············································································· 2分
····················································································· 4分
············································································· 6分
17.解:由,得
,······································································· 2分
由,得
,·············································································· 4分
原不等式组的解集是:
.····························································· 6分
18.解:(1)卖出甲计算器个数的频率:········································ 2分
卖出乙计算器个数的频率:········································· 3分
卖出丙计算器个数的频率:.····································· 4分
(2),·············································································· 5分
该文具店进甲、乙、丙三种科学计算器时,按
的比例进货.············· 6分
(或该文具店进货时,丙科学计算器进多一些,而甲、乙科学计算器进少一些.类 似这样的合理答案5分)
19.(1)正确画出图形·········································································· 3分
(2)正确画出图形·········································································· 5分
························································································ 6分
20.解:(1)这个游戏公平.······························································· 2分
根据图
甲的对称性,阴影部分的面积等于圆面积的一半,
这个游戏公平.·································································································· 4分
(2)把图乙中的同心圆平均分成偶数等分,再把其中的一半作为阴影部分即可.(图略) 7分
21.解:如图,过点分别作
于点
的延长线于
.······· 1分
在
中,
,··································································· 2分
m··········································· 3分
又········································································································· 5分
.···································································· 6分
.··············································································· 7分
22.解:设甲工厂每天能加工件新产品,··································································· 1分
则乙工厂每天能加工件新产品.······························································· 2分
依题意得方程 .····································································· 4分
解得或
(不合题意舍去),····························································· 6分
经检验是所列方程的解,
.····································································································· 7分
答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.·················· 8分
23.解:(1).···························································································· 2分
四边形
和
都是正方形,
,
,·················· 3分
,
,······································································································· 4分
.··················································································· 5分
(2)结论仍然成立.··················································································· 6分
同理可证,
.······························································ 8分
24.解:(1)在中,令
,得
,得
.
令,得
,得
,
.····················································· 2分
设点到直线
的距离为
,
,
.·························································································· 4分
(其它解法参照给分)
(2)如图,设与直线
相切于点
,连
,则
,······························· 5分
,
······································································· 6分
由(1)得,
,
(秒).···························································································· 8分
根据对称性得,
(秒).························································· 9分
当
与直线
相切时,
秒或
秒.······················································· 10分
25.解:(1)点
在抛物线
上,且
,
,······················· 1分
点
与点
关于
轴对称,
.························································ 2分
设直线的解析式为
,
.······················································································· 3分
解方程组,得
.································································· 4分
(2)当四边形的两对角线互相垂直时,由对称性得直线
与
轴的夹角等于
所以点
的纵、横坐标相等,···························································································································· 5分
这时,设,代入
,得
,
.
即当时,四边形
的两条对角线互相垂直.········································· 7分
(3)线段.································································································ 8分
点
在抛物线
,且
,
得直线的解析式为
,
解方程组,得点
······················································· 9分
由对称性得点,················································· 10分
,
.···································································································· 11分