初中毕业会考数学试卷(新课程)
考生注意:本试卷共十道大题,其中正卷八道题,满分100分;另附加题二道题,共20分,时量120分钟.
一、填空题(本题共12个小题,每小题2分,共24分)
1.函数中自变量
的取值范围是 .
2.如右图,已知,
,则
,
.
3.永州市现共有11个县(区),总地域面积约亩,用科学记数法(保留三个有效数字)表示这一数据为 亩.
4.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.
5.不等式组
的解集是 .
6. 的平行四边形是菱形(填一个合适的条件).
7.如图所示是 体的展开图.
8.在建设社会主义新农村活动中,张村、李村为合理利用资源,优化环境,兴建了一批沼气池,设张村已建沼气池个,李村所建沼气池的数目是张村的2倍少1个,则李村所建沼气池数目为 个(用代数式表示).
9.如图为九嶷山风景区的几个景点的平面图,以舜帝陵为坐标原点,建立平面直角坐标系,则玉王宫岩所在位置的坐标为 .
![]() |
10.如图所示,在等腰三角形中,
,
,那么底边上的高
cm.
11.在10000株樟树苗中,任意测量20株的苗高,这个问题中,样本容量是 .
12.如右图所示为农村一古老的捣碎器,已知支撑柱的高为0.3米,踏板
长为1.6米,支撑点
到踏脚
的距离为0.6米,现在踏脚着地,则捣头点
上升了 米.
二、选择题:(每题只有一个正确选项,请将正确选项的代号填入下表,本题共8个小题,每小题3分,共24分)
13.
在中,无理数的个数是( )
A.1 B.2 C. 3 D.4
14.在下列二次根式中,与是同类二次根式的是( )
A. B.
C.
D.
15.在下列图形中,既是中心对称又是轴对称的图形是( )
(纸风车) (中国国蝶) (美丽的地板) (稻草人)
A. B. C. D.
16.已知,下列四个不等式中,不正确的是( )
A. B.
C.
D.
17.小慧今天到学校参加初中毕业会考,从家里出发走10分钟到离家500米的地方吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1000米的学校参加考试.下列图象中,能反映这一过程的是( )
18.在2,3,4,5,五个数据中,平均数是4,那么这组数据的方差是( )
A.2 B.10 C. D.
19.某市电视台在今年5月举办的“开心就唱”歌手大赛活动中,号召观众发短信为参赛者投支持票,投票短信每1万条为1组,每组抽出1个一等奖,3个二等奖,6个三等奖.张艺同学发了1条短信,她的获奖概率是( )
A.
B.
C.
D.
20.如图,在半径为的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第
个内切圆,它的半径是( )
A. B.
C.
D.
三、(本题含两个小题,每小题6分,共12分)
21.计算:.
22.化简求值:
,其中
,
.
四、(本题满分6分)
23.请画出已知图形(如图所示)关于直线的对称图形.(保留作图痕迹,不写画法)
![]() |
五、(本题满分8分)
24.已知正比例函数经过点
.(如图所示)
(1)求这个正比例函数的解析式.
(2)该直线向上平移3个单位,求平移后所得直线的解析式.
![]() |
六、(本题满分8分)
25.2006年“五一”长假期间,永州市政府在阳明山风景区举办了“阳明山‘和’文化节”,参加人数多达26000人,7天内参加人员按地域来源分类统计的结果是:
一.永州市内人数占50%;
二.湖南省内,永州市外的来客占25%;
三.中国内地,湖南省外的来客占12%;
四.港、澳、台三地同胞占8%;
五.国外游客占5%.
扇形统计图如右图所示:
(一)把各地域代号与扇形区域代号的对应关系,
用线段连接起来:
一
二 三 四 五
1 2 3 4 5
(二)求参加“阳明山‘和’文化节”活动的港、澳、台同胞的人数.
七、(本题满分8分)
26.李大伯承包了一片荒山,在山上种植了一部分优质油桃,今年已进入第三年收获期.今年收获油桃6912千克,已知李大伯第一年收获的油桃重量为4800千克.试求去年和今年两年油桃产量的年平均增长率,照此增长率,预计明年油桃的产量为多少千克?
八、(本题满分10分)
27.如图的内接
中,外角
的角平分线与
相交于
点,
,垂足为
,
,垂足为
.
问:(1)与
是否相等?为什么?
(2)图中有哪几组相等的线段?
(3)当满足什么条件时,
,为什么?
![]() |
(附加题)九、(本题满分10分)
28.已知抛物线经过点
.
(1)求抛物线的解析式.
(2)设抛物线顶点为,与
轴交点为
.求
的值.
(3)设抛物线与
轴的另一个交点为
,求四边形
的面积.
(附加题)十、(本题满分10分)
29.如图,以为圆心的两个同心圆中,大圆的直径
交小圆于
两点,大圆的弦
切小圆于点
,过点
作直线
,垂足为
,交大圆于
两点.
(1)试判断线段与
的大小关系,并说明理由.
(2)求证:.
(3)若
是方程
的两根(
),求图中阴影部分图形的周长.
初中毕业会考试卷参考答案及评分标准
数 学(新课标)
一、填空题(12个小题,每题2分,共24分)
1. 2.
3.
4.稳定
5.或
6.对角线互相垂直或(一组)邻边相等
7.六棱锥 8. 9.
10.6 11.20 12.0.8
二、选择题(8个小题,每题3分,共24分)
题号 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
答案 | B | C | C | B | D | A | B | A |
三、计算(共2题,每题6分,共12分)
21.解:原式=···················································································· 3分
.····································································· 6分
22.化简求值:
解:原式··································································· 2分
.······································································································· 3分
当时,
······················································································· 4分
.························································································· 6分
四、作图题(共6分)
23.(画出了轴对称图形6分,无作图痕迹扣2分)
![]() |
五、(共8分)
24.(1)解:由函数经过点
,可得:
,解析式为:
.······· 4分
(2)解:直线向上平移3个单位后,得到的解析式为:
.············· 8分
六、(本题共8分)
25.(1)一 二 三 四 五
1 2 3 4 5
(2)解:(人)··········································································· 4分
答:参加“和”节的港、澳、台同胞的人数为2080人.················································ 8分
七、(本题共8分)
26.解:设油桃今年和去年的年平均增长率为,依题意得:······································· 1分
.································································································· 3分
解方程得:或
(舍去负根)得
.··································· 5分
预计明年的产量为:(千克).············································ 7分
答:年平均增长率为20%,照此增长率,预计明年的产量为8294.4千克.···················· 8分
八、(本题共10分)
27.(1)答:相等.······································································································ 1分
因为为
的角平分线(已知),
.
,
.
.································································································· 3分
(2).(写出一组得1分)··················· 7分
(3)且
时,
,······································· 9分
因为为直角,所以
为直角,
为
的角平分线,
,所以
.···················································· 10分
附加题 九、(本题共10分)
28.(1)解方程组
得,
.·················································································· 3分
(2)顶点.················································· 6分
(3)在中,令
得
,
,
令得
或
,
.············································································ 8分
四边形
(面积单位)···················································· 10分
十、(本题满分10分)
29.(1)相等.············································································································· 1分
连结,则
,故
.····································································· 3分
(2)由,得
,······································· 4分
又由,得
.····························································· 5分
.································································································ 6分
(3)解方程得:,
,··························································· 7分
,
,
在中,
,
,
.
在中,
,
,
,
弧长
,
,······· 9分
阴影部分周长.················································ 10分