初中毕业暨高中阶段招生考试数学试卷(A)
注意事项:
1.全卷共计150分,考试时间120分钟.考生在答题前务必将毕业学校、报考学校、姓名、准考证号、座位号填写在试卷的相应位置上.
2.答题时请用同一颜色(蓝色或黑色)的钢笔、碳素笔或圆珠笔将答案直接写在考试卷上,要求字迹工整,卷面整洁.
3.不得另加附页,附页上答题不记分.
一、选择题(本题共12个小题,每小题4分,共计48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知相切两圆的半径是一元二次方程的两个根,则这两个圆的圆心距是( ).
A.7 B.1或7 C.1 D.6
2.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次鱼共200条,有10条做了记号,则估计湖里有( )条鱼.
A.400条 B.500条 C.800条 D.1000条
3.某地2004年外贸收入为2.5亿元,2006年外贸收入达到了4亿元,若平均每年的增长率为,则可以列出方程为( ).
A.
B.
C. D.
4.如图,,
,
是双曲线上的三点,过这三点分别作
轴的垂线,得到三个三角形
,
,
,设它们的面积分别是
,
,
则( ).
A. B.
C.
D.
5.在中,
,下列各式中正确的是( ).
A.
B.
C.
D.
6.书包里有数学书3本、英语书2本、语文书5本,从中任意抽取一本,则是数学书的概率是( ).
A. B.
C.
D.
7.如图,在直角坐标系中,将矩形沿
对折,使点
落在
处,已知
,
,则点
的坐标是( ).
A. B.
C.
D.
8.已知二次函数
的图象如图所示,对称轴是
,则下列结论中正确的是( ).
A. B.
C. D.
9.如图:在直角梯形
中,
,
,
,
,
为梯形的中位线,
为梯形的高,则下列结论:①
,②四边形
为菱形,③
,④以
为直径的圆与
相切于点
,其中正确结论的个数为( ).
A.4 B.3 C.2 D.1
10.已知的图象是抛物线,若抛物线不动,把
轴,
轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ).
A. B.
C. D.
11.若圆锥经过轴的截面是一个正三角形,则它的侧面积与底面积之比是( ).
A. B.
C.
D.
12.在中,弦
与直径
相交于点
,夹角为
,且分直径为
两部分,
厘米,则弦
的长为( )厘米.
A. B.
C.
D.
二、填空题(本题共8个小题,每小题4分,共32分,请把答案填在题中的横线上)
13.在函数中,自变量
的取值范围是 .
14.已知
是方程
的两根,则
的值是 .
15.如图,是正方体的平面展开图,每个面上标有一个汉字组成的三个词,分别是兰州人引以自豪的“三个一”(一本书,一条河,一碗面),在正方体上与“读”字相对的面上的字是 .
16.在实数范围内定义一种运算“”,其规则为
,根据这个规则,方程
的解为 .
17.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm时,滑轮的一条半径
绕轴心
按逆时针方向旋转的角度约为 .(假设绳索与滑轮之间没有滑动,
取
,结果精确到
)
18.开口向下的抛物线的对称轴经过点
,则
.
19.已知等腰内接于半径为5的
,如果底边
的长为6,则底角的正切值为 .
20.请选择一组你喜欢的的值,使二次函数
的图象同时满足下列条件:①开口向下,②当
时,
随
的增大而增大;当
时,
随
的增大而减小.这样的二次函数的解析式可以是 .
三、解答题(本大题共10道题,共计70分,解答时应写出必要的文字说明、证明过程或演算步骤)
21.(本题满分6分)
随机抽查某城市30天的空气状况统计如下:
污染指数( | 40 | 60 | 90 | 110 | 120 |
天数( | 3 | 3 | 9 | 10 | 5 |
其中,时,空气质量为优:
时,空气质量为良;
时,空气质量为轻微污染.
(1)请用扇形统计图表示这30天中空气质量的优、良、轻微污染的分布情况;
(2)估计该城市一年(365天)中有多少天空气质量达到良以上.
22.(本题满分6分)
小明想测量校园内一棵不可攀的树的高度.由于无法直接度量两点间的距离,请你用学过的数学知识按以下要求设计一种测量方案.
(1)画出测量图案;
(2)写出测量步骤(测量数据用字母表示);
(3)计算间的距离(写出求解或推理过程,结果用字母表示).
![]() |
23.(本题满分6分)
如图,是
的直径,
交
的中点于
,
(1)求证:
;
(2)求证:是
的切线.
24.(本题满分6分)
如图所示,在中,
分别是
和
上的一点,
与
交于点
,给出下列四个条件:①
;②
;③
;④
.
(1)上述四个条件中,哪两个条件可以判定是等腰三角形(用序号写出所有的情形);
(2)选择(1)小题中的一种情形,证明
是等腰三角形.
25.(本题满分6分)
有两个可以自由转动的均匀转盘,分别被分成4等份,3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:
①分别转动转盘和
;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止;③如果和为0,丁洋获胜,否则王倩获胜.
(1)用列表法(或树状图)求丁洋获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由.
![]() |
26.(本题满分7分)
如图所示,有一座抛物线形拱桥,桥下面在正常水位时,宽
,水位上升
就达到警戒线
,这时水面宽度为
.
(1)在如图的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时
的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?
27.(本题满分8分)
已知一次函数的图象与反比例函数
的图象相交,其中一个交点的纵坐标为6.
(1)求两个函数的解析式;
(2)结合图象求出时,
的取值范围.
28.(本题满分8分)
在的内接
中,
,
,垂足为
,且
,设
的半径为
,
的长为
.
(1)求与
的函数关系式;
(2)当的长等于多少时,
的面积最大,并求出
的最大面积.
29.(本题满分8分)
广场上有一个充满氢气的气球
,被广告条拽着悬在空中,甲乙二人分别站在
处,他们看气球的仰角分别是
,
,
点与
点的高度差
为1米,水平距离
为5米,
的高度为
米,请问此气球有多高?(结果保留到
米)
30.如图,已知为
的边
上的一点,以
为顶点的
的两边分别交射线
于
两点,且
(
为锐角).当
以点
为旋转中心,
边与
重合的位置开始,按逆时针方向旋转(
保持不变)时,
两点在射线
上同时以不同的速度向右平行移动.设
,
(
),
的面积为
.若
.
(1)当旋转
(即
)时,求点
移动的距离;
(2)求证:;
(3)写出与
之间的关系式;
(4)试写出
随
变化的函数关系式,并确定
的取值范围.
数学参考答案(A)
注:对另解情况均酌情给分.
一、选择题:(本大题共12个小题,每小题4分,共48分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
答案 | B | D | A | D | C | C | A | D | B | B | D | B |
二、填空题:(本大题共有8个小题,每小题4分,共32分)
13.; 14.
; 15.面; 16.
或
; 17.
;
18.; 19.
或
; 20.答案不唯一,只要满足对称轴是
,
.
三、解答题:(本大题共有10道题,共计70分)
21.本题满分6分
解:(1)设天中空气质量分别为优、良、轻微污染的扇形图的圆心角依次为
,
··································································································· 3分
扇形统计图为:
···························································· 5分
(2)一年中空气质量达到良以上的天数约为:
(天)·············································································· 6分
22.本题满分6分
(1)答案不唯一,提供一种方案:
测量平面图如图:
················································· 2分
(2)测量出································································ 4分
(3).····························································································· 6分
23.本题满分6分
解:(1)是
的半径,
,········································································································· 1分
又,
,
,······························································ 2分
,
····································································································· 3分
(2)连接,
,
,
,············································································································· 5分
又,
,所以
是
的切线·········································································· 6分
24.本题满分6分
(1)①③,①④,②③,②④
每对一组得分·············································································································· 4分
(2)证明:略·············································································································· 6分
25.本题满分6分
解:(1)每次游戏可能出现的所有结果列表如下:
转盘 转盘 的数字 | | | |
| | | |
| | | |
| | | |
| | | |
根据表格,共有种可能的结果,··············································································· 2分
其中和为的有三种:
,
,
丁洋获胜的概率为
·········································· 4分
(2)这个游戏不公平
丁洋获胜的概率为
,王倩获胜的概率为
,
,
游戏对双方不公平
······························································· 6分
26.本题满分7分
解:(1)设所求抛物线的解析式为:································································ 1分
设则
························································································· 3分
,
解得
··············································································································· 5分
(2),
小时
所以再持续小时到达拱桥顶.····················································································· 7分
27.本题满分8分
解:(1)由已知设交点
··············································································································· 2分
·················································································································· 3分
,
····························································································· 4分
(2)由方程组得
,
,
······································································································· 6分
由图像可知当或
时
································································ 8分
28.本题满分8分
解:(1)作直径,连接
,则
························································· 1分
,
·············································································· 2分
又,
············································································· 3分
即
··························································································· 4分
········································································································· 5分
当时,
最大为
.················································································ 7分
的最大面积为
.··························································································· 8分
29.本题满分8分
解:设米·········································································································· 1分
,
··········································································· 2分
················································································································ 3分
在中,
····································································································· 5分
,
米········································ 6分
气球的高度为
米·················································· 8分
30.本题满分9分
解:(1)且
为锐角,
,即
,·············· 1分
初始状态时,
为等边三角形,
,当
旋转到
时,点
移动到
,
,
,
,······························································· 2分
在中,
,
,
点
移动的距离为
································································································· 3分
(2)在和
中,
,
,
,································································································· 4分
(3),
,
过点作
,垂足为
,
在中,
,
,
,
在中,
························ 5分
,即
········································································· 6分
(4)在中,
边上的高
为
············································································· 8分
,
,即
,
又,
的取值范围是
;
是
的正比例函数,且比例系数
,
,即
···························································· 9分