初中毕业暨高中阶段招生考试数学试卷(A)
注意事项:
1.全卷共计150分,考试时间120分钟.考生在答题前务必将毕业学校、报考学校、姓名、准考证号、座位号填写在试卷的相应位置上.
2.答题时请用同一颜色(蓝色或黑色)的钢笔、碳素笔或圆珠笔将答案直接写在考试卷上,要求字迹工整,卷面整洁.
3.不得另加附页,附页上答题不记分.
一、选择题(本题共12个小题,每小题4分,共计48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知相切两圆的半径是一元二次方程
的两个根,则这两个圆的圆心距是( ).
A.7 B.1或7 C.1 D.6
2.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次鱼共200条,有10条做了记号,则估计湖里有( )条鱼.
A.400条 B.500条 C.800条 D.1000条
3.某地2004年外贸收入为2.5亿元,2006年外贸收入达到了4亿元,若平均每年的增长率为
,则可以列出方程为( ).
A.
B.![]()
C.
D.![]()
4.如图,
,
,
是双曲线上的三点,过这三点分别作
轴的垂线,得到三个三角形
,
,
,设它们的面积分别是
,
,
则( ).
A.
B.
C.
D.![]()
5.在
中,
,下列各式中正确的是( ).
A.
B.
C.
D.![]()
6.书包里有数学书3本、英语书2本、语文书5本,从中任意抽取一本,则是数学书的概率是( ).
A.
B.
C.
D.![]()
7.如图,在直角坐标系中,将矩形
沿
对折,使点
落在
处,已知
,
,则点
的坐标是( ).
A.
B.
C.
D.
8.已知二次函数
的图象如图所示,对称轴是
,则下列结论中正确的是( ).
A.
B.
C.
D.![]()
9.如图:在直角梯形
中,
,
,
,
,
为梯形的中位线,
为梯形的高,则下列结论:①
,②四边形
为菱形,③
,④以
为直径的圆与
相切于点
,其中正确结论的个数为( ).
A.4 B.3 C.2 D.1
10.已知
的图象是抛物线,若抛物线不动,把
轴,
轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ).
A.
B.
C.
D.![]()
11.若圆锥经过轴的截面是一个正三角形,则它的侧面积与底面积之比是( ).
A.
B.
C.
D.![]()
12.在
中,弦
与直径
相交于点
,夹角为
,且分直径为
两部分,
厘米,则弦
的长为( )厘米.
A.
B.
C.
D.![]()
二、填空题(本题共8个小题,每小题4分,共32分,请把答案填在题中的横线上)
13.在函数
中,自变量
的取值范围是 .
14.已知
是方程
的两根,则
的值是 .
15.如图,是正方体的平面展开图,每个面上标有一个汉字组成的三个词,分别是兰州人引以自豪的“三个一”(一本书,一条河,一碗面),在正方体上与“读”字相对的面上的字是 .
16.在实数范围内定义一种运算“
”,其规则为
,根据这个规则,方程
的解为 .
17.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm时,滑轮的一条半径
绕轴心
按逆时针方向旋转的角度约为 .(假设绳索与滑轮之间没有滑动,
取
,结果精确到
)
18.开口向下的抛物线
的对称轴经过点
,则
.
19.已知等腰
内接于半径为5的
,如果底边
的长为6,则底角的正切值为 .
20.请选择一组你喜欢的
的值,使二次函数
的图象同时满足下列条件:①开口向下,②当
时,
随
的增大而增大;当
时,
随
的增大而减小.这样的二次函数的解析式可以是 .
三、解答题(本大题共10道题,共计70分,解答时应写出必要的文字说明、证明过程或演算步骤)
21.(本题满分6分)
随机抽查某城市30天的空气状况统计如下:
| 污染指数( | 40 | 60 | 90 | 110 | 120 |
| 天数( | 3 | 3 | 9 | 10 | 5 |
其中,
时,空气质量为优:
时,空气质量为良;
时,空气质量为轻微污染.
(1)请用扇形统计图表示这30天中空气质量的优、良、轻微污染的分布情况;
(2)估计该城市一年(365天)中有多少天空气质量达到良以上.
22.(本题满分6分)
小明想测量校园内一棵不可攀的树的高度.由于无法直接度量
两点间的距离,请你用学过的数学知识按以下要求设计一种测量方案.
(1)画出测量图案;
(2)写出测量步骤(测量数据用字母表示);
(3)计算
间的距离(写出求解或推理过程,结果用字母表示).
![]() |
23.(本题满分6分)
如图,
是
的直径,
交
的中点于
,![]()
(1)求证:
;
(2)求证:
是
的切线.
24.(本题满分6分)
如图所示,在
中,
分别是
和
上的一点,
与
交于点
,给出下列四个条件:①
;②
;③
;④
.
(1)上述四个条件中,哪两个条件可以判定
是等腰三角形(用序号写出所有的情形);
(2)选择(1)小题中的一种情形,证明
是等腰三角形.
25.(本题满分6分)
有两个可以自由转动的均匀转盘
,分别被分成4等份,3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:
①分别转动转盘
和
;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止;③如果和为0,丁洋获胜,否则王倩获胜.
(1)用列表法(或树状图)求丁洋获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由.
![]() |
26.(本题满分7分)
如图所示,有一座抛物线形拱桥,桥下面在正常水位
时,宽
,水位上升
就达到警戒线
,这时水面宽度为
.
(1)在如图的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时
的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?
27.(本题满分8分)
已知一次函数
的图象与反比例函数
的图象相交,其中一个交点的纵坐标为6.
(1)求两个函数的解析式;
(2)结合图象求出
时,
的取值范围.
28.(本题满分8分)
在
的内接
中,
,
,垂足为
,且
,设
的半径为
,
的长为
.
(1)求
与
的函数关系式;
(2)当
的长等于多少时,
的面积最大,并求出
的最大面积.

29.(本题满分8分)
广场上有一个充满氢气的气球
,被广告条拽着悬在空中,甲乙二人分别站在
处,他们看气球的仰角分别是
,
,
点与
点的高度差
为1米,水平距离
为5米,
的高度为
米,请问此气球有多高?(结果保留到
米)
30.如图,已知
为
的边
上的一点,以
为顶点的
的两边分别交射线
于
两点,且
(
为锐角).当
以点
为旋转中心,
边与
重合的位置开始,按逆时针方向旋转(
保持不变)时,
两点在射线
上同时以不同的速度向右平行移动.设
,
(
),
的面积为
.若
.
(1)当
旋转
(即
)时,求点
移动的距离;
(2)求证:
;
(3)写出
与
之间的关系式;
(4)试写出
随
变化的函数关系式,并确定
的取值范围.
数学参考答案(A)
注:对另解情况均酌情给分.
一、选择题:(本大题共12个小题,每小题4分,共48分)
| 题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 答案 | B | D | A | D | C | C | A | D | B | B | D | B |
二、填空题:(本大题共有8个小题,每小题4分,共32分)
13.
; 14.
; 15.面; 16.
或
; 17.
;
18.
; 19.
或
; 20.答案不唯一,只要满足对称轴是
,
.
三、解答题:(本大题共有10道题,共计70分)
21.本题满分6分
解:(1)设
天中空气质量分别为优、良、轻微污染的扇形图的圆心角依次为
,
![]()
![]()
![]()
![]()
![]()

··································································································· 3分
扇形统计图为:
···························································· 5分
(2)一年中空气质量达到良以上的天数约为:
(天)·············································································· 6分
22.本题满分6分
(1)答案不唯一,提供一种方案:
测量平面图如图:
················································· 2分
(2)测量出
································································ 4分
(3)
.····························································································· 6分
23.本题满分6分
解:(1)
是
的半径,
,········································································································· 1分
又
,
,
,······························································ 2分
,
····································································································· 3分
(2)连接
,
,
,
,············································································································· 5分
又
,
,所以
是
的切线·········································································· 6分
24.本题满分6分
(1)①③,①④,②③,②④
每对一组得
分·············································································································· 4分
(2)证明:略·············································································································· 6分
25.本题满分6分
解:(1)每次游戏可能出现的所有结果列表如下:
| 转盘 转盘 的数字 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
根据表格,共有
种可能的结果,··············································································· 2分
其中和为
的有三种:
,
,![]()
丁洋获胜的概率为
·········································· 4分
(2)这个游戏不公平
丁洋获胜的概率为
,王倩获胜的概率为
,
,
游戏对双方不公平
······························································· 6分
26.本题满分7分
解:(1)设所求抛物线的解析式为:
································································ 1分
设
则
························································································· 3分
,![]()
解得
··············································································································· 5分
(2)
,
小时
所以再持续
小时到达拱桥顶.····················································································· 7分
27.本题满分8分
解:(1)由已知设交点![]()
··············································································································· 2分
·················································································································· 3分
,
····························································································· 4分
(2)由方程组
得
,
,
······································································································· 6分
由图像可知当
或
时
································································ 8分
28.本题满分8分
解:(1)作直径
,连接
,则
························································· 1分
,
·············································································· 2分
又
,
············································································· 3分
即
··························································································· 4分
········································································································· 5分
当
时,
最大为
.················································································ 7分
的最大面积为
.··························································································· 8分
29.本题满分8分
解:设
米·········································································································· 1分
,
··········································································· 2分
················································································································ 3分
在
中,![]()
····································································································· 5分
,
米········································ 6分
气球的高度为
米·················································· 8分
30.本题满分9分
解:(1)
且
为锐角,
,即
,·············· 1分
初始状态时,
为等边三角形,
,当
旋转到
时,点
移动到
,
,
,
,······························································· 2分
在
中,
,
,
点
移动的距离为
································································································· 3分
(2)在
和
中,
,
,
,································································································· 4分
(3)
,
,
过
点作
,垂足为
,
在
中,
,
,
,
在
中,![]()
························ 5分
,即
········································································· 6分
(4)在
中,
边上的高
为![]()
············································································· 8分
,
,即
,
又
,
的取值范围是
;
是
的正比例函数,且比例系数
,
,即![]()
···························································· 9分

