高中、中专、中师招生统一考试数学试卷
(非课改实验区)(黔南)
注意事项:
1.本试卷共8页,26个小题,满分150分,考试时间120分
2.请用蓝黑墨水的钢笔或圆珠笔在试卷上答题,作图用铅笔,可使用不带储存功能的科学计算器
一、填空题(本大题共10小题,每小题3分,满分30分)
1.黔南州人口总数约为,用科学记数法表示为 .
2.不等式
的解集是 .
3.计算:
.
4.因式分解:
.
5.已知点
是函数
图象上的三点,且
,则
的大小关系是 .
6.当
时,分式
的值为零.
7.科学家发现:植物的花瓣,萼片,果实的数目以及其它方面的特征,都非常吻合一个奇待的数列——著名的斐波那契数列:1,1,2,3,5,8,13,21,34,55,……,仔细观察以上数列,则它的第11个数应该是 .
8.如图1,
分别是
的边
上的点,请你添加一个条件,使
与
相似,你添加的条件是 .
9.若将二次函数
,配方成为
的形式(其中
为常数),则
.
10.如图2,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为
,白棋④的坐标为
,那么黑棋的坐标应该是 .
二、单项选择题(每小题4分,共6小题,满分24分)
11.现规定一种运算:
,其中
为实数,则
等于( )
A.
B.
C.
D.![]()
12.下列图形中,面积最大的是( )
A.边长为5的正方形
B.半径为
的圆
C.边长为6,8,10的三角形 D.对角线长为6和8的菱形
13.如果代数式
的值为18,那么代数式
的值等于( )
A.
B.
C.
D.![]()
14.向一空容器内均匀注水,最后把容器注满,在注水过程中,容器的水面高度与时间的关系如图3所示,图中
为线段,则这个容器是( )
15.如图4,
的弦
相交于
,已知
,
,那么
的度数是( )
A.
B.
C.
D.![]()
16.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图5所示,则该秋千所荡过的圆弧长为( )
A.
米 B.
米 C.
米 D.
米
三、解答题(本大题共10小题,满分96分)
17.(本题满分10分,(1)小题5分,(2)小题5分)
(1)计算:![]()
(2)用换元法解方程:
.
18.(本题满分6分)
如图,是由半圆和三角形组成的图形,请以
为对称轴,作出图形的另一半(用尺规作图,只保留作图痕迹,不写作法和证明)
19.(本题满分10分)
如图,梯形
中,
,
,
为梯形
外一点,
分别交线段
于点
,且
.
(1)写出图中三对你认为全等的三角形(不再添加辅助线)
(2)选择你在(1)中写出全等三角形中任意一对进行证明.
20.(本题满分7分)阅读材料题:
在平面直角坐标系中,已知
轴上两点
,
的距离记作
,如
,
是平面上任意两点,我们可以通过构造直角三角形来求
间距离,如图,过
分别向
轴,
轴作垂线,
和
,垂足分别是
,
,
,
,直线
交
于
,在
中,
.
,![]()
.
由此得任意两点
间距离公式![]()
(1)直接应用平面内两点间距离公式,求点
之间的距离;
(2)若
是平面上一定点,
是平面上一动点,且
间的距离恒为2,运用平面内两点间距离公式,写出关于
满足的方程,并说出此方程的图像是什么?
21.(本题满分10分)
已知:三角形
内接于
,过
作直线![]()
(1)如图,
为直径,要使得
是
的切线,还需添加的条件是(只需写出三种情况)
①_______________②_______________③_______________
(2)如图,
为非直径的弦,已知![]()
求证:
是
的切线
22.(本题满分10分)
某船以每小时
海里的速度向正东方向航行,在点
测得某岛
在北偏东
方向上,航行半小时后到达点
,测得该岛在北偏东
方向上,已知该岛周围
海里内有暗礁
(1)试说明点
是否在暗礁区域外?
(2)若继续向东航行有无触礁危险?请说明理由.
23.(本题满分11分)
一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图像解答下列问题.
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售价格是多少?
(3)降价后他按每千克
元将剩余土豆售完,这时他手中的钱(含备用零钱)是
元,问他一共带了多少千克土豆.
24.(本题满分10分)
如图,在梯形
中,
,
,
,
,
,点
从
点开始,沿
边向
运动,速度为
厘米/秒,点
从点
开始沿
边向点
运动,速度为
厘米/秒,设四边形
的面积为
.
(1)写出面积
与时间
之间的函数关系式;
(2)当
为何值时,四边形
是平行四边形?
(3)当
为何值时,四边形
是等腰梯形?
25.(本题满分10分)
如图,
为圆的切线,
为切点,
为割线,
的平分线交
于点
,交
于点
.
求证:(1)
;(2)
.
26.(本题满分12分)一座隧道的截面由抛物线和长方形构成,长方形的长为
,宽为
,隧道最高点
位于
的中央且距地面
,建立如图所示的坐标系
(1)求抛物线的解析式;
(2)一辆货车高
,宽
,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?
高中、中专、中师招生统一考试
数学试卷(非课改实验区)参考答案
一、1.
2.
3.
4.
5.![]()
6.
7.
8.
或
或![]()
9.
10.![]()
二、
| 题号 | 11 | 12 | 13 | 14 | 15 | 16 |
| 答案 | C | B | C | C | C | B |
三、17.(1)原式
······ 4分(计算每1项正确给1分,如计算
(给1分))
············································································· 5分
(2)![]()
设
················································································· 1分
则原方程化为![]()
解得
···································································· 2分
当
时,解得
································· 3分
当
时,![]()
即
方程无解 ······································ 4分
原方程的根为
··································· 5分
18.(1)分别以
为端点,大于
作弧,两弧交于
(1分)
(2)作直线
,交
于
(给1分)
(3)以
为半径作已知半圆的另一半(给1分)
(4)以
点为圆心,
为半径作弧,然后以
点为圆心
为半径作弧,两弧交于点
(给2分)
(5)连结
和
(给1分)
19.(1)
,
(每写对一对给1分,满分3分)
(2)假设是![]()
证明:![]()
点在线段
的中垂线上 ·············································· 2分
又
为等腰梯形,
分别为上下底,由对称性可知
点也是在
的中垂线上 4分
········································································· 5分
···························································· 7分(其它证法该相应步骤给分)
20.(1)解:利用![]()
把
代入上式
················································· 3分
(2)据题意有:
·········································· 4分
则:
························································ 5分
根据圆的定义可知该图象是一个圆 ············································· 7分
21.(1)①
②
③
④![]()
⑤
以上答案均可选择,与序号无关(只要写对一个给1分,满分3分)
(2)证明:连结
并延长
交
于
,连结
····················· 1分

,
····························· 2分
又
是直径,
···················· 3分
····································· 4分
又![]()
···························································· 5分
················································································· 6分
又
是半径,
是
的切线 ·········································· 7分
22.(1)过点
作
,交
于点
········································ 1分
(海里) ···················································· 2分
![]()
··········································································· 3分
又
······················································ 4分
即![]()
点
在暗礁区域外 ··································································· 5分
(2)过点
作
,垂足为
················································· 6分
在
中,![]()
令
,则
························································· 7分
在
中,![]()
······························· 8分
,![]()
解得
··················································································· 9分
![]()
船继续向东航行有触礁的危险 ························· 10分(其它解法相应给分)
23.(1)农民自带的零钱为
元 ······························································· 2分
(2)设降价每千克售价的价格为
元,据题意 ·································· 3分
元/千克 ························································ 6分
(3)设他一共带了
斤土豆,根据题意 ············································· 7分
······································································ 10分
解得
(千克)
答:他一共带了
千克的土豆. ·············································· 11分
24.(1)根据题意![]()
又
··················································· 1分
····················································································· 2分
而![]()
![]()
······················································· 3分
(2)假设当
时,四边形
为平行四边形,根据平行四边形的判定定理有
5分
即:![]()
解得
··················································································· 6分
当
秒时,四边形为平行四边形.
(3)假设当
时,四边形
是等腰梯形,则
(如右下图)
···················································· 7分
又作
分别垂直于
,则
![]()
················································································ 8分
··················································································· 9分
,解得
(秒). ·································· 10分
25.证法一:(1)
平分
,
···················· 1分

为圆的切线,
. ··············· 2分
,
, ······························· 3分
. ·········································· 4分
(2)
,且
,
, ········································· 5分
. ················································································ 7分
,且
,
, ······································································ 8分
. ················································································ 9分
,
. ··········································· 10分
证法二:(1)同上
(2)过点
作
交
于点
,
,
.
,且
.
又
,
.
由(1)知:
,
,
.(按相应的给分)
26.(1)由题意可知抛物线经过点
················ 2分
设抛物线的方程为
············································· 3分
将
三点的坐标代入抛物线方程.
解得抛物线方程为
········································· 5分(解出
的值可分别给1分)
(2)令
,则有
··········································· 6分
解得
················································ 7分
····································································· 8分
货车可以通过. ······································································· 9分
(3)由(2)可知
············································· 11分
货车可以通过. ····································································· 12分