数学初中毕业升学考试(非课改卷)
(本试卷共8页,满分120分;考试时间120分钟)
题号 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 总分 | 总分人 | 复分人 |
得分 |
亲爱的同学,展示才华的时候到了,相信自己,细心解答,遇到数字运算尽可能使用计算器,定会获得理想的成绩.祝你成功!
一、填空题:本大题共10小题,每小题2分,共20分.请将答案直接写在题中的横线上.
1.计算:
.
2.写出的一个同类项: .
3.已知数据:,那么这组数据的众数是
.
4.若,
,则代数式
的值是 .
5.如图1,火焰的光线穿过小孔
,在竖直的屏幕上形成倒立的实像,像的高度为
,
,
,则火焰的高度是
.
6.已知一元二次方程两根的和等于这两根的积,则
.
7.如图2,有反比例函数
,
的图象和一个圆,则
.
8.商店里把塑料凳整齐地叠放在一起,据图3的信息,当有10张塑料凳整齐地叠放在一起时的高度是 .
9.某厂前年缴税
万元,今年缴税
万元,如果该厂缴税的年平均增长率为
,那么可列方程为 .
10.如图4,为
的直径,
经过弦
的中点
,
,则
.
二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有
一项是符合题意的,请将你认为正确答案的序号填在题后括号内.
11.截至2006年4月15日3时44分,我国神舟六号飞船轨道舱已环绕地球2920圈,用科学记数法表示这个数是( )
A.圈 B.
圈
C.圈 D.
圈
12.计算:,正确的结果是( )
A. B.
C.
D.
13.不等式组
的解集是( )
A. B.
C.或
D.
14.如图5,下列条件不能判定直线的是( )
A. B.
C. D.
15.丽丽买了一张30元的租碟卡,每租一张碟后剩下的余额如表6表示,若丽丽租碟25张,则卡中还剩下( )
A.5元 B.10元 C.20元 D.14元
租碟数(张) | 卡中余额(元) |
1 | |
2 | |
3 | |
| |
|
16.正比例函数的图象经过第二、四象限,若
同时满足方程
,则此方程的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.不能确定
17.如图7,四边形
是扇形
的内接矩形,顶点
在
上,且不与
重合,当
点在
上移动时,矩形
的形状、大小随之变化,则
的长度( )
A.变大 B.变小
C.不变 D.不能确定
18.如图8,
与
相交于
两点,直线
与
相切于点
,与
相切于点
,
的延长线交
于
,连结
,
.下列结论:①
;②
;③
.其中错误的结论有( )
A.3个 B.2个
C.1个 D.0个
三八为解答题,满分共76分.解答应写出文字说明,证明过程或演算步骤.
三、本大题共2小题,满分共16分.
19.(本小题满分8分)
计算:.
20.(本小题满分8分)
解方程:.
四、本大题共2小题,满分共16分.
21.(本小题满分8分)
某科技馆座落在山坡处,从山脚
处到科技馆的路线如图9所示.已知
处海拔高度
为,斜坡
的坡角为
,
,斜坡
的坡角为
,
,那么科技馆
处的海拔高度是多少?(精确到
)
(参考数据:
)
22.(本小题满分8分)
如图10,在和
中,现给出如下三个论断:①
;②
;
③.
请选择其中两个论断为条件,另一个论断为结论,构造一个命题.
(1)写出所有的真命题(写成“
”形式,用序号表示):
.
(2)请选择一个真命题加以证明.
你选择的真命题是:.
证明:
五、本大题共1小题,满分10分.
23.(本小题满分10分)
某制衣厂近四年来关于销售额与总成本的统计图,如图11所示.
(1)请你在图12中画出四年利润(利润销售额
总成本)的统计直方图(要求标出数字);
(2)根据图11,图12分别写出一条你发现的信息;
(3)若从2004年到2006年这两年间的利润年平均增长率相同,请你预测2006年的利润是多少万元?
![]() | |||
![]() | |||
六、本大题共1小题,满分10分.
24.(本小题满分10分)
为鼓励居民节约用水和保护水资源,市城区从2006年3月1日起,对居民生活用水采取按月按户实行阶梯式计量水价收费,其收费标准是:第一阶梯水价为
元/
;第二阶梯水价为
元/
.
(1)每户人口为4人(含4人)以内的,月用水量执行第一阶梯水价,月用水量
的部分执行第二阶梯水价.如果某户人口4人,3月份用水量
,那么应交水费 元;4月份用水量
,那么应交水费 元.
(2)每户核定人数超过4人的,月用水量(
核定人数)执行第一阶梯水阶,月用水量
(
核定人数)的部分执行第二阶梯水价,若小江家人口有5人,设月用水量
,应交水费
元.
①请你写出与
的函数关系式;
②若小江家某月交水费
元,则该月用水量是多少
?
七、本大题共1小题,满分12分.
25.(本小题满分12分)
如图13,已知是
的直径,弦
于
,
是
上的一点,且
,延长
交
于
,连结
.
(1)试判断的形状(按边分类),并证明你的结论;
(2)若的半径为
,
,求
之值.
八、本大题共1小题,满分12分.
26.(本小题满分12分)
在矩形中,
,
,以
为坐标原点,
所在的直线为
轴,建立直角坐标系.然后将矩形
绕点
逆时针旋转,使点
落在
轴的
点上,则
和
点依次落在第二象限的
点上和
轴的
点上(如图14).
(1)求经过三点的二次函数解析式;
(2)设直线与(1)的二次函数图象相交于另一点
,试求四边形
的周长.
(3)设为(1)的二次函数图象上的一点,
,求
点的坐标.
![]() |
初中毕业升学考试
数学试题(非课改)参考答案及评分标准
一、填空题:(每小题2分,共20分)
1.2 2.答案不唯一,如,
3.6 4.2006
5. 6.
7.
8.
9.
10.
二、选择题:(每小题3分,共24分)
11.B 12.D 13.D 14.C 15.B 16.A 17.C 18.C
三、19.解:原式·············································································· 6分
.································································································ 8分
20.解:.···························································································· 2分
.·································································································· 4分
.···································································································· 6分
检验:当时,
,
.
原方程的解为
.··········································································· 8分
四、21.解:过
向水平线
作垂线
,垂足为
,过
向水平线
作垂线
,垂足为
(如右图),则 2分
.·························· 4分
.································································································ 6分
科技馆
处的海拔高度是:
.······ 8分
22.解:(1)真命题是:,
························································· 4分
(2)选择命题一:
证明:在和
中,
,
,
,
.································································· 7分
.············································································· 8分
选择命题二:
证明:在和
中,
,
,
,
.································································· 7分
.·············································································· 8分
五、23解:(1)正确画出统计直方图,并标出数字.···················································· 4分
(2)答案不唯一.每写出一条正确的信息给1分.····································· 6分
(3)2004年到2005年的增长率.···················· 8分
预测2006年的利润为:(万元).················· 10分
六、24.解:(1),
··················································································· 4分
(2)①当时,
;···················································· 5分
当时,
.·················································· 7分
②,可见用水量超过
.
当
时,
.······································ 8分
解得.············································································ 9分
小江家该月用水量为
.··················································· 10分
七、25.(1)解:是等腰三角形.证明如下:
,
.························································· 1分
.············································································ 2分
,
.················································ 3分
.
是等腰三角形.······················ 4分
(2)解:连结,
.··································· 5分
由(1)知,
.
.·································· 6分
.
又,
.···································································· 7分
,即
.·································· 8分
,
.·········································· 9分
.··································· 11分
.··········································································· 12分
八、26.(1)解:由题意可知,,
.······················· 1分
,
,
.······················································ 2分
设经过三点的二次函数解析式是
.
把代入之,求得
.····················································· 3分
所求的二次函数解析式是:
.··········································· 4分
(2)解:由题意可知,四边形为矩形.
,且
.································································· 5分
直线
与二次函数图象的交点
的坐标为
,
.························································································ 6分
与
与
关于抛物线的对称轴对称,
.························································ 7分
四边形
的周长
.····················································································· 8分
(3)解法1:设
交
轴于
.
,
,
即.
,于是
.··················· 9分
设直线的解析式为
.
把,
代入之,
得解得
.··················································································· 10分
联合一次,二次函数解析式组成方程组
解得或
(此组数为
点坐标)
所求的
点坐标为
.······················································· 12分
解法2:过作
轴于
.由
,得
.
设所求点的横坐标为
,则纵坐标为
.····· 9分
,
,
.··············································································· 10分
,
,
.
解之,得或
.····································································· 11分
经检验可知,是原方程的根;
是原方程的增根,故应舍去.
当时,
.
所求的
点坐标为
. 12分