当前位置:首页 -初中数学试卷 - 初中三年级数学试题 - 正文*

数学初中毕业升学考试(非课改卷)

2014-5-11 0:17:41下载本试卷

数学初中毕业升学考试(非课改卷)

(本试卷共8页,满分120分;考试时间120分钟)

题号

总分

总分人

复分人

得分

  亲爱的同学,展示才华的时候到了,相信自己,细心解答,遇到数字运算尽可能使用计算器,定会获得理想的成绩.祝你成功!

一、填空题:本大题共10小题,每小题2分,共20分.请将答案直接写在题中的横线上.

1.计算:                

2.写出的一个同类项:             

3.已知数据:,那么这组数据的众数是 

                

4.若,则代数式

的值是            

5.如图1,火焰的光线穿过小孔,在竖直的屏幕上形成倒立的实像,像的高度为,则火焰的高度是                

6.已知一元二次方程两根的和等于这两根的积,则            

文本框: 7.如图2,有反比例函数的图象和一个圆,则            

8.商店里把塑料凳整齐地叠放在一起,据图3的信息,当有10张塑料凳整齐地叠放在一起时的高度是            

9.某厂前年缴税万元,今年缴税万元,如果该厂缴税的年平均增长率为,那么可列方程为                 

10.如图4,的直径,经过弦的中点,则                 

二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有

一项是符合题意的,请将你认为正确答案的序号填在题后括号内.

11.截至2006年4月15日3时44分,我国神舟六号飞船轨道舱已环绕地球2920圈,用科学记数法表示这个数是(  )

A.圈             B.圈    

C.圈             D.

12.计算:,正确的结果是(  )

A.        B.         C.         D.

13.不等式组的解集是(  )

A.          B.      

C.       D.

14.如图5,下列条件不能判定直线的是(  )

A.              B.       

C.         D.

15.丽丽买了一张30元的租碟卡,每租一张碟后剩下的余额如表6表示,若丽丽租碟25张,则卡中还剩下(  )

A.5元         B.10元         C.20元          D.14元

租碟数(张)

卡中余额(元)

1

2

3

表6

 


16.正比例函数的图象经过第二、四象限,若同时满足方程,则此方程的根的情况是(  )

A.有两个不相等的实数根           B.有两个相等的实数根

C.没有实数根                    D.不能确定

17.如图7,四边形是扇形的内接矩形,顶点上,且不与重合,当点在上移动时,矩形的形状、大小随之变化,则的长度(  )

  A.变大           B.变小          

C.不变           D.不能确定

18.如图8,相交于两点,直线相切于点,与相切于点的延长线交,连结.下列结论:①;②;③.其中错误的结论有(  )

  A.3个          B.2个       

C.1个          D.0个

八为解答题,满分共76分.解答应写出文字说明,证明过程或演算步骤.

三、本大题共2小题,满分共16分.

19.(本小题满分8分)

计算:

20.(本小题满分8分)

解方程:

四、本大题共2小题,满分共16分.

21.(本小题满分8分)

某科技馆座落在山坡处,从山脚处到科技馆的路线如图9所示.已知处海拔高度

,斜坡的坡角为,斜坡的坡角为,那么科技馆处的海拔高度是多少?(精确到

(参考数据:   

22.(本小题满分8分)

如图10,在中,现给出如下三个论断:①;②

请选择其中两个论断为条件,另一个论断为结论,构造一个命题.

(1)写出所有的真命题(写成“”形式,用序号表示):

                            

(2)请选择一个真命题加以证明.

   你选择的真命题是:

证明:

五、本大题共1小题,满分10分.

23.(本小题满分10分)

  某制衣厂近四年来关于销售额与总成本的统计图,如图11所示.

(1)请你在图12中画出四年利润(利润销售额总成本)的统计直方图(要求标出数字);

(2)根据图11,图12分别写出一条你发现的信息;

(3)若从2004年到2006年这两年间的利润年平均增长率相同,请你预测2006年的利润是多少万元?


六、本大题共1小题,满分10分.

24.(本小题满分10分)

  为鼓励居民节约用水和保护水资源,市城区从2006年3月1日起,对居民生活用水采取按月按户实行阶梯式计量水价收费,其收费标准是:第一阶梯水价为元/;第二阶梯水价为元/

(1)每户人口为4人(含4人)以内的,月用水量执行第一阶梯水价,月用水量部分执行第二阶梯水价.如果某户人口4人,3月份用水量,那么应交水费             元;4月份用水量,那么应交水费              元.

(2)每户核定人数超过4人的,月用水量核定人数)执行第一阶梯水阶,月用水量核定人数)的部分执行第二阶梯水价,若小江家人口有5人,设月用水量,应交水费元.

  ①请你写出的函数关系式;

②若小江家某月交水费元,则该月用水量是多少

七、本大题共1小题,满分12分.

25.(本小题满分12分)

  如图13,已知的直径,弦上的一点,且,延长,连结

(1)试判断的形状(按边分类),并证明你的结论;

(2)若的半径为,求之值.

八、本大题共1小题,满分12分.

26.(本小题满分12分)

在矩形中,,以为坐标原点,所在的直线为轴,建立直角坐标系.然后将矩形绕点逆时针旋转,使点落在轴的点上,则点依次落在第二象限的点上和轴的点上(如图14).

(1)求经过三点的二次函数解析式;

(2)设直线与(1)的二次函数图象相交于另一点,试求四边形的周长.

(3)设为(1)的二次函数图象上的一点,,求点的坐标.


初中毕业升学考试

数学试题(非课改)参考答案及评分标准

一、填空题:(每小题2分,共20分)

  1.2       2.答案不唯一,如        3.6           4.2006

5.     6.         7.         8.         9.         10.

二、选择题:(每小题3分,共24分)

  11.B         12.D         13.D         14.C         15.B      16.A         17.C         18.C

三、19.解:原式·············································································· 6分

        .································································································ 8分

  20.解:.···························································································· 2分

      .·································································································· 4分

      .···································································································· 6分

      检验:当时,

      原方程的解为.··········································································· 8分

四、21.解:过向水平线作垂线,垂足为,过向水平线作垂线,垂足为(如右图),则   2分

    .·························· 4分

    

      

      .································································································ 6分

    科技馆处的海拔高度是:.······ 8分

22.解:(1)真命题是:························································· 4分

    (2)选择命题一:

      证明:在中,

         

         .································································· 7分

         .············································································· 8分

      选择命题二:

      证明:在中,

         

         .································································· 7分

         .·············································································· 8分

五、23解:(1)正确画出统计直方图,并标出数字.···················································· 4分

     

     (2)答案不唯一.每写出一条正确的信息给1分.····································· 6分

     (3)2004年到2005年的增长率.···················· 8分

        预测2006年的利润为:(万元).················· 10分

六、24.解:(1)··················································································· 4分

      (2)①当时,;···················································· 5分

时,

.·················································· 7分

,可见用水量超过

 时,.······································ 8分

  解得.············································································ 9分

 小江家该月用水量为.··················································· 10分

七、25.(1)解:是等腰三角形.证明如下:

        .························································· 1分

        .············································································ 2分

        .················································ 3分

        

        是等腰三角形.······················ 4分

    (2)解:连结.··································· 5分

        由(1)知

        .·································· 6分

        

        又

        .···································································· 7分

        ,即.·································· 8分

        

        .·········································· 9分

        .··································· 11分

        .··········································································· 12分

八、26.(1)解:由题意可知,.······················· 1分

        .······················································ 2分

        设经过三点的二次函数解析式是

        把代入之,求得.····················································· 3分

        所求的二次函数解析式是:

.··········································· 4分

(2)解:由题意可知,四边形为矩形.

   ,且.································································· 5分

   直线与二次函数图象的交点的坐标为

   .························································································ 6分

   关于抛物线的对称轴对称,

   .························································ 7分

   四边形的周长

    

    .····················································································· 8分

(3)解法1:设轴于

   

   

   即

       ,于是.··················· 9分

       设直线的解析式为

       把代入之,

解得

       .··················································································· 10分

       联合一次,二次函数解析式组成方程组

       解得(此组数为点坐标)

       所求的点坐标为.······················································· 12分

  解法2:过轴于.由,得

      设所求点的横坐标为,则纵坐标为.····· 9分

      

      .··············································································· 10分

      

       

      

      解之,得.····································································· 11分

      经检验可知,是原方程的根;是原方程的增根,故应舍去.

      当时,

      所求的点坐标为.  12分