数学初中毕业学业考试试卷
考生注意:本科试卷共六个大题,满分120分,考试时量120分钟.
一、填空题(本大题共8个小题,每小题3分,满分24分)
1.
的倒数是 .
2.在函数中,自变量
的取值范围是 .
3.如图,为
的直径,
,则
度.
4.2005年我国自主研制成功发射的神州六号载人飞船,第一次将我国两名航天员送上太空,在太空飞行115小时32分后安全返回预定着落场——内蒙古四子王旗广场,行程米,用科学记数法表示为 米.
5.如图,一个半径为20cm的转动轮转动
角时,传送带上的物体
平移的距离 是 cm.(结果用含
的式子表示)
![]() |
6.在某一电路中,保持电压不变,电流(安)与电阻
(欧)成反比例关系.其函数图像如图所示,则这一电路的电压为 伏.
7.图案设计,请你用○、△、 材料拼成一幅你认为最漂亮的图形 .
8.找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第幅图中共有 个.
![]() |
二、选择题(本大题共8个小题,每小题3分,满分24分,每小题给出四个选项,选出符合题设要求的一项,将其代号填入对应的题号下)
9.去年娄底市有7.6万学生参加初中毕业会考,为了解这7.6万名学生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )
A.这1000名考生是总体的一个样本
B.7.6万名考生是总体
C.每位考生的数学成绩是个体
D.1000名学生是样本容量
10.如果是任意的两个实数,下列式中的值一定是负数的是( )
A. B.
C.
D.
11.用长为5cm,6cm,7cm的三条线段围成三角形的事件是( )
A.随机事件 B.必然事件 C.不可能事件 D.以上都不是
12.将函数与函数
的大致图象画在同一坐标系中,正确的函数图象是( )
13.如图是一个正方体纸盒的平面展开图,每一个正方形内部都有一个单项式.当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单项式是( )
A.b B.c C.d D.e
14.下列汽车标志中既是轴对称又是中心对称图形的是( )
大众 本田 欧宝 奥迪
A. B. C. D.
15.方程的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的正根
C.无实数根 D.负根的绝对值大于正根的绝对值
16.下列A、B、C、D四幅图案中,能通过平移图案(1)得到的是( )
![]() |
(1) A. B. C. D.
三、运算题(本大题共4个小题,每小题7分,满分28分)
17.计算:.
18.先化简,然后选择一个合适的你最喜欢的
的值,代入求值.
19.已知桑塔纳小汽车的耗油量是每100km耗油15升.所使用的90#汽油今日涨价到5元/升.
(1)写出汽车行驶途中所耗油费(元)与行程
(km)之间的函数关系式;
(2)在平面直角坐标系内描出大致的函数关系图;
(3)计算娄底到长沙220公里所需油费多少?
20.如图,滑杆在机械槽内运动,为直角,已知滑杆
长2.5米,顶端
在
上运动,量得滑杆下端
距
点的距离为1.5米,当端点
向右移动0.5米时,求滑杆顶端
下滑多少米?
![]() |
四、操作与证明(本大题共2个小题,每小题8分,满分16分)
21.如图,在平面直角坐标系中,已知的顶点坐标
,
,
.
(1)写出的顶点坐标;
(2)将变换至
要通过什么变换?请说明;
(3)画出关于
轴的轴反射图形.
![]() |
22.如图,在平行四边形中,点是对角线
上两点,且
.
(1)写出图中每一对你认为全等的三角形;
(2)选择(1)中的任意一对全等三角形进行证明.
![]() |
五、实践与应用(本大题共2个小题,每小题8分,满分16分)
23.小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容(如图),求出他们看中的随身听和书包单价各是多少元吗?
![]() |
24.娄底市为引导学生树立正确的消费观,随机调查了市内某校100名学生寒假中花零花钱的数量(钱数取整数元).以便引导学生树立正确的消费观.根据调查数据制成了频率分布表和频率分布直方图.
频率分布表
分组 | 频数 | 频率 |
0.5~50.5 | ______ | 0.1 |
50.5~______ | 20 | 0.2 |
100.5~150.5 | ______ | ______ |
______~200.5 | 30 | 0.3 |
200.5~250.5 | 10 | 0.1 |
250.5~300.5 | 5 | 0.05 |
合计 | 100 | ______ |
(1)补全频率分布表.
(2)大家认为,应对消费150元以上的学生提倡勤俭节约的建议.试估计应对该校1000名学生中的多少名学生提出这项建议?
六、综合探究(本大题满分12分)
25.如图:在直角坐标系中放入一边长为6的矩形纸片
,将纸翻折后,使点
恰好落在
轴上,记为
,折痕为
,已知
.
(1)求出点的坐标;
(2)求折痕所在直线的解析式;
(3)作交
于
,已知抛物线
通过
点,以
为圆心
的长为半径的圆与抛物线是否还有除
点以外的交点?若有,请找出这个交点坐标.
![]() |
数学初中毕业学业考试试卷
参考答案与评分标准
一、填空题(每小题3分,满分24分)
1. 2.
3.30 4.
5.
6.10
7.画了图案就给分 8.
二、选择题(每小题3分,选对得3分,多选、不选均得0分,满分24分)
9.C 10.D 11.B 12.D 13.D 14.D 15.D 16.B
三、运算题(每小题7分,满分21分)
17.解:原式.
18.解:原式
.
依题意,只要就行,如
,原式
.
19.解:(1) 即
.·········· 3分
(2)画出图象.·················································· 2分
(3)当时,
.··········· 7分
因此,娄底到长沙220公里所需油费是165元.
20.解:设的长为
米,依题意得
.
,
.································································· 3分
,
在
中,
.························································································································· 6分
.即
.
答:梯子下滑0.5米.··································································································· 7分
21.(本题8分)解:(1),
,
.············································ 3分
(2)是由
绕着
点顺时针旋转
得到的.······································· 6分
(3)略.····················································································································· 8分
22.(本题8分)解:(1);
;
(每写出一对计1分)
(2)分组.
23.(本题8分)解:设他们看中的书包的单价为元,随身听的单价为
元.············· 1分
依题意有·································································································· 4分
解得·············································································································· 7分
答:(略)····················································································································· 8分
24.(本题8分)解:(1)分组:100.5,150.5;频数:10,25;频率:0.25,1.00,每小空记1分
(2)(人).································································ 8分
25.(1)在中,
,·················································· 2分
,
点
.············································································· 4分
(2)由已知得:,
,
.······································································· 5分
设,则
,
.
,得
.
,
.············································ 6分
设直线的解析式
,
根据题意得解得:
····································································· 7分
所在直线的解析式:
.······································································· 8分
(3)设,
点
在直线
上,
.
.············································································································· 10分
以
点为圆心,以
为半径的圆的对称轴是
轴,
抛物线的对称轴也是
轴.
除交点
外,另有交点
,
是
点关于
轴的对称点.
其坐标为.······························································································· 12分