当前位置:首页 -初中数学试卷 - 初中三年级数学试题 - 正文*

数学初中毕业学业考试试卷

2014-5-11 0:17:41下载本试卷

数学初中毕业学业考试试卷

考生注意:本科试卷共六个大题,满分120分,考试时量120分钟.

一、填空题(本大题共8个小题,每小题3分,满分24分)

1.的倒数是    

2.在函数中,自变量的取值范围是    

3.如图,的直径,,则    度.

4.2005年我国自主研制成功发射的神州六号载人飞船,第一次将我国两名航天员送上太空,在太空飞行115小时32分后安全返回预定着落场——内蒙古四子王旗广场,行程米,用科学记数法表示为    米.

5.如图,一个半径为20cm的转动轮转动角时,传送带上的物体平移的距离    是    cm.(结果用含的式子表示)


 

6.在某一电路中,保持电压不变,电流(安)与电阻(欧)成反比例关系.其函数图像如图所示,则这一电路的电压为    伏.

7.图案设计,请你用○、△、  材料拼成一幅你认为最漂亮的图形    

8.找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第幅图中共有    个.


二、选择题(本大题共8个小题,每小题3分,满分24分,每小题给出四个选项,选出符合题设要求的一项,将其代号填入对应的题号下)

9.去年娄底市有7.6万学生参加初中毕业会考,为了解这7.6万名学生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是(  )

A.这1000名考生是总体的一个样本

B.7.6万名考生是总体

C.每位考生的数学成绩是个体

D.1000名学生是样本容量

10.如果是任意的两个实数,下列式中的值一定是负数的是(  )

A.     B.    C.      D.

11.用长为5cm,6cm,7cm的三条线段围成三角形的事件是(  )

A.随机事件    B.必然事件     C.不可能事件      D.以上都不是

12.将函数与函数的大致图象画在同一坐标系中,正确的函数图象是(  )


13.如图是一个正方体纸盒的平面展开图,每一个正方形内部都有一个单项式.当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单项式是(  )

A.b       B.c       C.d       D.e

14.下列汽车标志中既是轴对称又是中心对称图形的是(  )

    大众       本田       欧宝       奥迪

     A.       B.        C.       D.

15.方程的根的情况是(  )

A.有两个相等的实数根      B.有两个不相等的正根

C.无实数根               D.负根的绝对值大于正根的绝对值

16.下列A、B、C、D四幅图案中,能通过平移图案(1)得到的是(  )


   (1)      A.      B.       C.    D.

三、运算题(本大题共4个小题,每小题7分,满分28分)

17.计算:

18.先化简,然后选择一个合适的你最喜欢的的值,代入求值.

19.已知桑塔纳小汽车的耗油量是每100km耗油15升.所使用的90#汽油今日涨价到5元/升.

(1)写出汽车行驶途中所耗油费(元)与行程(km)之间的函数关系式;

(2)在平面直角坐标系内描出大致的函数关系图;

(3)计算娄底到长沙220公里所需油费多少?

20.如图,滑杆在机械槽内运动,为直角,已知滑杆长2.5米,顶端上运动,量得滑杆下端点的距离为1.5米,当端点向右移动0.5米时,求滑杆顶端下滑多少米?


四、操作与证明(本大题共2个小题,每小题8分,满分16分)

21.如图,在平面直角坐标系中,已知的顶点坐标

(1)写出的顶点坐标;

(2)将变换至要通过什么变换?请说明;

(3)画出关于轴的轴反射图形.


22.如图,在平行四边形中,点是对角线上两点,且

(1)写出图中每一对你认为全等的三角形;

(2)选择(1)中的任意一对全等三角形进行证明.


五、实践与应用(本大题共2个小题,每小题8分,满分16分)

23.小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容(如图),求出他们看中的随身听和书包单价各是多少元吗?


24.娄底市为引导学生树立正确的消费观,随机调查了市内某校100名学生寒假中花零花钱的数量(钱数取整数元).以便引导学生树立正确的消费观.根据调查数据制成了频率分布表和频率分布直方图.

频率分布表

分组

频数

频率

0.5~50.5

______

0.1

50.5~______

20

0.2

100.5~150.5

______

______

______~200.5

30

0.3

200.5~250.5

10

0.1

250.5~300.5

5

0.05

合计

100

______

(1)补全频率分布表.

(2)大家认为,应对消费150元以上的学生提倡勤俭节约的建议.试估计应对该校1000名学生中的多少名学生提出这项建议?

六、综合探究(本大题满分12分)

25.如图:在直角坐标系中放入一边长为6的矩形纸片,将纸翻折后,使点恰好落在轴上,记为,折痕为,已知

(1)求出点的坐标;

(2)求折痕所在直线的解析式;

(3)作,已知抛物线通过点,以为圆心的长为半径的圆与抛物线是否还有除点以外的交点?若有,请找出这个交点坐标.


数学初中毕业学业考试试卷

参考答案与评分标准

一、填空题(每小题3分,满分24分)

1.  2.  3.30  4.  5.  6.10

7.画了图案就给分  8.

二、选择题(每小题3分,选对得3分,多选、不选均得0分,满分24分)

9.C 10.D 11.B 12.D 13.D 14.D 15.D 16.B

三、运算题(每小题7分,满分21分)

17.解:原式

18.解:原式

依题意,只要就行,如,原式

19.解:(1) 即.·········· 3分

(2)画出图象.·················································· 2分

(3)当时,.··········· 7分

因此,娄底到长沙220公里所需油费是165元.

20.解:设的长为米,依题意得

.································································· 3分

中,

.························································································································· 6分

.即

答:梯子下滑0.5米.··································································································· 7分

21.(本题8分)解:(1).············································ 3分

(2)是由绕着点顺时针旋转得到的.······································· 6分

(3)略.····················································································································· 8分

22.(本题8分)解:(1)(每写出一对计1分)

(2)分组.

23.(本题8分)解:设他们看中的书包的单价为元,随身听的单价为元.············· 1分

依题意有·································································································· 4分

解得·············································································································· 7分

答:(略)····················································································································· 8分

24.(本题8分)解:(1)分组:100.5,150.5;频数:10,25;频率:0.25,1.00,每小空记1分

(2)(人).································································ 8分

25.(1)在中,,·················································· 2分

.············································································· 4分

(2)由已知得:

.······································································· 5分

,则

,得.············································ 6分

设直线的解析式

根据题意得解得:····································································· 7分

所在直线的解析式:.······································································· 8分

(3)设在直线上,

.············································································································· 10分

点为圆心,以为半径的圆的对称轴是轴,

抛物线的对称轴也是轴.

除交点外,另有交点点关于轴的对称点.

其坐标为.······························································································· 12分