当前位置:首页 -初中数学试卷 - 初中三年级数学试题 - 正文*

德州市2006年中等学校招生考试(课标卷)数学试题华师大版

2014-5-11 0:17:44下载本试卷

德州市2006年中等学校招生考试(课标卷)

数学试题

注意事项:

1.本试题分第卷和第卷两部分,第卷3页为选择题,24分;第卷8页为非选择题,96分;全卷共11页,满分120分,考试时间为120分钟.

2.答第卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.

3.第卷每题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑,如需改动,先用橡皮擦干净,再改涂其它答案.

4.考试时,允许使用科学计算器.

卷(选择题 共24分)

一、选择题(本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.)

1.气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是(  )

A.本市明天将有80%的地区降水       B.本市明天将有80%的时间降水

C.明天肯定下雨                D.明天降水的可能性比较大

2.若反比例函数的图象经过点,则这个函数的图象一定经过点(  )

A.     B.       C.     D.

3.在中,,点分别在, 上,四边形为平行四边形,且, 则的周长是(  )

A.      B.     C.     D.

4.由几个小立方体搭成的一个几何体如图1所示,它的主(正)视图见图2,那么它的俯视图为(  )


5.如图所示:边长分别为的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为,大正方形内除去小正方形部分的面积为(阴影部分),那么的大致图象应为(  )


6.某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是(  )

7.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动(  )

A.格        B.格        C.格       D.


8.已知点平分,交于点,则直线对应的函数表达式是(  )

A.           B.       C.     D.

卷(非选择题 共96分)

注意事项:

1第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.

2.答卷前将密封线内的项目填写清楚.

二、填空题(本大题共8小题,共24分,只要求填写最后结果,每小题填对得3分).

9.随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2005年海外学习汉语的学生人数已达人,用科学记数法表示为_____________人(保留3个有效数字).

10.从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是_____________.

11.钟表的轴心到分针针端的长为,那么经过分钟,分针针端转过的弧长是_____________.

12.已知方程组的解为,则的值为_____________.

13.将点绕原点顺时针旋转到点,则点的坐标是_____________.

14.如图:已知中,,直角的顶点中点,两边分别交于点,给出以下五个结论:

是等腰直角三角形④.当内绕顶点旋转时(点不与重合),上述结论中始终正确的序号有______________.

15.要在一个矩形纸片上画出半径分别是的两个外切圆,该矩形面积的最小值是______________.

16.如图,已知的面积

    在图(1)中,若,则

    在图(2)中,若,则

    在图(3)中,若,则

    按此规律,若,则            


三、解答题(本大题共7小题,共72分.解答要写出必要的文字说明、证明过程或演算步骤.)

17.(本题满分6分)

解不等式组,并把其解集在数轴上表示出来:

18.(本题满分10分)

某单位欲从内部招聘管理人员一名,对甲、乙、丙三名侯选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:

测试项目

测试成绩分

笔试

75

80

90

面试

93

70

68

根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.

    (1)请算出三人的民主评议得分;

    (2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到)?

    (3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么谁将被录用?

19.(本题满分10分)

近年来,由于受国际石油市场的影响,汽油价格不断上涨,请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.


20(本题满分10分)

两个全等的含角的三角板和三角板如图所示放置,三点在一条直线上,连结,取的中点,连结,试判断的形状,并说明理由.

21.(本题满分12分)

半径为中,直径的不同侧有定点和动点,已知,点上运动,过点的垂线,与的延长线交于点

(1)当点运动到与点关于直径对称时,求的长;

(2)当点运动到什么位置时,取到最大值,并求出此时的长.

22.(本题满分12分)

如图,在中,,点在直线上运动,设

(1)如果,试确定之间的函数关系式;

(2)如果的度数为的度数为,当满足怎样的关系式时,(1)中之间的函数关系式还成立,试说明理由.


23.(本题满分12分)

如图,平面直角坐标系中,四边形为矩形,点的坐标分别为,动点分别从同时出发,以每秒1个单位的速度运动.其中,点沿向终点运动,点沿向终点运动,过点,交,连结,已知动点运动了秒.

(1)点的坐标为(                        )(用含的代数式表示);

(2)试求面积的表达式,并求出面积的最大值及相应的值;

(3)当为何值时,是一个等腰三角形?简要说明理由.


德州市2006年中等学校招生考试(课标卷)

数学试题参考解答及评分意见

评卷说明:

1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.

2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数,每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.

3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.

一、选择题(本大题共8小题,每小题3分,共24分)

题号

1

2

3

4

5

6

7

8

答案

D

C

D

C

A

D

B

D

二、填空题(本大题共8小题,每小题3分,共24分)

9. 10.  11.  12.6  13.

14.①②③⑤  15.  16.

三、解答题(本大题共7小题,共72分)

17.(本小题满分6分)

  解:解不等式,得,····································································· 2分

  解不等式,得.···································································· 4分

  所以,原不等式组的解集是.···································································· 5分

  在数轴上表示为

·································· 6分

18.(本小题满分10分)

  解:(1)甲、乙、丙的民主评议得分分别为:50分,80分,70分.···························· 3分

  (2)甲的平均成绩为:(分),

    乙的平均成绩为:(分),

丙的平均成绩为:(分).

由于,所以候选人乙将被录用.············································· 6分

(3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么

甲的个人成绩为:(分),

乙的个人成绩为:(分),

丙的个人成绩为:(分),

由于丙的个人成绩最高,所以候选人丙将被录用.················································ 10分

19.(本小题满分10分)

  解:设去年5月份汽油价格为元/升,则今年5月份的汽油价格为元/升,··········· 1分

  根据题意,得.············································································· 5分

  整理,得

  解这个方程,得.······························································································· 8分

  经检验,是原方程的解.····················································································· 9分

  所以

  答:今年5月份的汽油价格为元/升.····································································· 10分

20.(本小题满分10分)

  解:的形状是等腰直角三角形.····································································· 1分

  证明:连接,由题意得:

  

  ………………2分

  又

  

  

  .······························································································ 5分

.············································································· 7分

  又

  

  .··········································································································· 9分

  所以的形状是等腰直角三角形.····································································· 10分

21.(本小题满分12分)

  解:(1)当点运动到与点关于直径对称时,如图所示,此时

的直径,

  

  

  

  又

  .…………………4分

  在中,

  

  

  .······················································································· 6分

  .··························································· 8分

  (2)因为点在弧上运动过程中,有

  所以最大时,取到最大值.············································································· 10分

  过圆心,即取最大值5时,最大,最大为.···························· 12分

22.(本小题满分12分)

  解:(1)在中,

  ,…………………………1分

   

  又

  .…………………………2分

  又

  .·································································································· 3分

  .································································································· 4分

  .············································································································ 5分

  即,所以.····························································································· 7分

  (2)当满足关系式时,函数关系式仍然成立.···················· 8分

  此时,.·············································································· 9分

  又

  .·································································································· 10分

  又仍然成立.················································ 11分

  从而(1)中函数关系式成立.··········································································· 12分

23.(本小题满分12分)

解:(1)由题意可知,

点坐标为.························································································ 2分

(2)设的面积为,在中,边上的高为,其中.   3分

.············································· 5分

的最大值为,此时.················································································ 7分

(3)延长,则有

①若

.……………………………………9分

②若,则

.································································································ 10分

③若,则

中,

.····························································· 11分

综上所述,,或,或