当前位置:首页 -初中数学试卷 - 初中三年级数学试题 - 正文*

2006年常德市初中毕业生学业考试数学试卷及答案华师大版

2014-5-11 0:17:45下载本试卷

2006年常德市初中毕业生学业考试数学试卷及答案

题号

总分

合分人

复分人

得分

考试注意:1.请考生在总分栏上面的座位号方格内工整地填写好座位号;

      2.本学科试卷共六道大题,满分150分,考试时量120分钟;

      3.考生可带科学计算器参加考试.

一、填空题(本大题8个小题,每个小题4分,满分32分)

1.的相反数是      

2.据统计,湖南省常德市2005年农业总产值达到24 800 000 000元,用科学记数法可表示为      元.

3.已知一元二次方程有一个根是2,那么这个方程可以是        (填上你认为正确的一个方程即可).

4.等腰梯形的上底、下底和腰长分别为4cm,10cm,6cm,则等腰梯形的下底角为

       度.

5.多项式与多项式的公因式是    

6.如图1,若分别相交于点的平分线与相交于点,且,则      度.

7.在半径为10cm的中,圆心到弦的距离为6cm,则弦的长是    cm.

 
8.右边是一个有规律排列的数表,请用含

的代数式(为正整数)表示数表中第

行第列的数:     


二、选择题(本题中的选项只有一个是正确的,请你将正确的选项填在下表中,本大题8个小题,每小题4分,满分32分)

题号

9

10

11

12

13

14

15

16

答案

9.下列计算正确的是(  )

A. B.  C.   D.

10.图2是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是(  )


11.图3是某中学七年级学生参加课外活动人数的扇形统计图,

若参加舞蹈类的学生有42人,则参加球类活动的学生人数有(  )

A.145人           B.147人      

C.149人           D.151人

12.根据下列表格中二次函数的自变量与函数值的对应值,判断方程为常数)的一个解的范围是(  ) 

6.17

6.18

6.19

6.20

A.             B.

C.           D.

13.下列命题中,真命题是(  )

A.两条对角线相等的四边形是矩形    B.两条对角线垂直的四边形是菱形

C.两条对角线垂直且相等的四边形是正方形;D.两条对角线相等的平行四边形是矩形

14.已知是反比例函数的图象上的三点,且,则的大小关系是(  )

A.             B.

C.             D.

15.如图4,在直角坐标系中,的半径为1,

则直线的位置关系是(  )

A.相离         B.相交       

C.相切         D.以上三种情形都有可能

16.若用(1),(2),(3),(4)四幅图象分别表示变量之间的关系,将下面的(a),(b),(c),(d)对应的图象排序:


(a)面积为定值的矩形(矩形的相邻两边长的关系)

(b)运动员推出去的铅球(铅球的高度与时间的关系)

(c)一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)

(d)某人从地到地后,停留一段时间,然后按原速返回(离开地的距离与时间的关系),其中正确的顺序是(  )

A.(3)(4)(1)(2)         B.(3)(2)(1)(4)

C.(4)(3)(1)(2)         D.(3)(4)(2)(1)

三、(本大题4个小题,每小题6分,满分24分)

17.计算:

18.先化简代数式:,然后选取一个使原式有意义的的值代入求值.

19.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.

(1)请你通过列表(或画树状图)计算甲获胜的概率.(4分)

(2)你认为这个游戏公平吗?为什么?(2分)

20.如图5,已知反比例函数的图象经过点,一次函数的图象经过点与点,且与反比例函数的图象相交于另一点

(1)分别求出反比例函数与一次函数的解析式;(4分)

(2)求点的坐标.(2分)

四、(本大题2个小题,每小题8分,满分16分)

21.如图6,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度,斜坡的长是50米,在山坡的坡底处测得铁架顶端的仰角为,在山坡的坡顶处测得铁架顶端的仰角为

(1)求小山的高度;(4分)

 
(2)求铁架的高度.(,精确到0.1米)(4分)

22.如图7,是等边三角形内的一点,连结,以为边作,且,连结

(1)观察并猜想之间的大小关系,并证明你的结论.(4分)

(2)若,连结,试判断的形状,并说明理由.(4分)


五、(本大题2个小题,每小题10分,满分20分)

23.在今年“五一”长假期间,某学校团委会要求学生参加一项社会调查活动.八年级学生小青想了解她所居住的小区500户居民的家庭收入情况,从中随机调查了40户居民家庭的收入情况(收入取整数,单位:元)并绘制了如下的频数分布表和频数分布直方图.


分组

频数

频率

2

0.050

6

0.150

0.450

9

0.225

2

0.050

合计

40

1.000

根据以上提供的信息,解答下列问题:

(1)    补全频数分布表:(3分)

(2)    补全频数分布直方图;(2分)

(3)    这40户家庭收入的中位数落在哪一个小组?(2分)

(4)    请你估计该居民小区家庭收入较低(不足1000元)的户数大约有多少户?(3分)

24.某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元.

(1)求挂式空调和电风扇每台的采购价各是多少元?(5分)

(2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.该业主希望当这两种电器销售完时,所获得的利润不少于3500元.试问该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少?(5分)

六、(本大题2个小题,每小题13分,满分26分)

25.如图8,在直角坐标系中,以点为圆心,以为半径的圆与轴相交于点,与轴相交于点

(1)若抛物线经过两点,求抛物线的解析式,并判断点是否在该抛物线上.(6分)

(2)在(1)中的抛物线的对称轴上求一点,使得的周长最小.(3分)

(3)设为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点,使得四边形是平行四边形.若存在,求出点的坐标;若不存在,说明理由.(4分)


26.把两块全等的直角三角形叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点

(1)如图9,当射线经过点,即点与点重合时,易证.此时,      .(2分)

(2)将三角板由图9所示的位置绕点沿逆时针方向旋转,设旋转角为.其中

,问的值是否改变?说明你的理由.(5分)

(3)在(2)的条件下,设,两块三角板重叠面积为,求的函数关系式.(图10,图11供解题用)(6分)

2006年常德市初中毕业生学业考试试卷

数学参考答案及评分标准

说明:

(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分150分.

(二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本答案中的标准给分.

(三)评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度者,视影响程度决定后面部分的得分,但原则上不超过后面部分应得分数的一半,如有严重的概念错误,就不给分.

一、填空题(本小题8个小题,每小题4分,满分32分)

1.          2.       3.

4.         5.              6.         7.       8.

二、选择题(本小题8个小题,每小题4分,满分32分)

题号

9

10

11

12

13

14

15

16

答案

三、(本小题4个小题,每小题6分,满分24分)

17.解:

    ··········································································· 3分

    ··························································································· 4分

    ································································································· 5分

    ········································································································· 6分

18.解:

    ··························································· 2分

    ···················································································· 4分

    ··································································································· 5分

   当时,原式的值为.········································································· 6分

   说明:只要,且代入求值正确,均可记满分6分.

19.解:(1)利用列表法得出所有可能的结果,如下表:

1

2

3

4

5

5

10

15

20

6

6

12

18

24

7

7

14

21

28

8

8

16

24

32

由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为.············································································································· 4分

(2)这个游戏对双方不公平,因为甲获胜的概率,乙获胜的概率,所以,游戏对双方是不公平的.···················································································································· 6分

20.解:(1)在反比例函数的图象上.

        即

      又在一次函数图象上.

      

      反比例函数与一次函数解析式分别为:·········· 4分

    (2)由,即

     于是

     的坐标为········································································ 6分

四、(本大题2个小题,每小题8分,满分16分)

21.解:(1)如图,过垂直于坡底的水平线于点

  由已知,斜坡的坡比,于是

  坡角······················································································· 2分

  于是在中,

   即小山高为25米·························································································· 4分

   (2)设铁架的高

   在中,已知,于是 

······················ 6分

   在中,已知

   又

   由,得

   ,即铁架高米························································ 8分

22.解:(1)猜想:··············································································· 1分

    证明:在中,

    

    

    

    ···························································································· 4分

    (2)由  可设 5分

    连结,在中,由于,且

    为正三角形   

    于是在中,

    是直角三角形·········································································· 8分

五、(本大题2个小题,每小题10分,满分20分)

23.解:(1)频数:18    频数:3,   频率:0.075································ 3分

 (2)略·············································································································· 5分

 (3)这40户家庭收入的中位数在这个小组(或答第三小组)········ 7分

 (4)因为收入较低的频率为,所以该小区500户居民的家庭收入较低的户数为户.····················································································································· 10分

24.解:(1)设挂式空调和电风扇每台的采购价格分别为元和

 依题意,得········································································ 3分

 解得

 即挂式空调和电风扇每台的采购价分别为元和元.······························ 5分

(2)设该业主计划购进空调台,则购进电风扇

解得:

为整数  为9,10,11········································································· 7分

故有三种进货方案,分别是:方案一:购进空调9台,电风扇61台;

             方案二:购进空调10台,电风扇60台;

             方案三:购进空调11台,电风扇59台.··············· 8分

设这两种电器销售完后,所获得的利润为,则

                      

由于的增大而增大.

故当时,有最大值,

  即选择第3种进货方案获利最大,最大利润为元································ 10分

  说明:如果将时分别代入中,通过比较得到获利最大的方案,同样记满分.

六、(本大题2个小题,每小题13分,满分26分)

25.解:(1)

     

     又在中,

     

     的坐标为··········································································· 3分

    又两点在抛物线上,

     解得

     抛物线的解析式为:········································ 5分

     当时,

     在抛物线上··································································· 6分

    (2)

        

       抛物线的对称轴方程为·················· 7分

       在抛物线的对称轴上存在点,使的周长最小.

       的长为定值   要使周长最小只需最小.

       连结,则与对称轴的交点即为使周长最小的点.

       设直线的解析式为

       由

       直线的解析式为

       由

       故点的坐标为···························································· 9分

     (3)存在,设为抛物线对称轴上一点,在抛物线上要使四边形为平行四边形,则,点在对称轴的左侧.

      于是,过点作直线与抛物线交于点

      由

      从而

      故在抛物线上存在点,使得四边形为平行四边形.··

···························································································································· 13分

26.解:(1)8······································································································· 2分

  (2)的值不会改变.········································································· 3分

  理由如下:在中,

  

  

  即

······················ 5分

  ·················································· 7分

(3)情形1:当时,,即,此时两三角板重叠部分为四边形,过

  

  由(2)知:

  于是

    ··········································································· 10分

  情形2:当时,时,即,此时两三角板重叠部分为

  由于,易证:

  解得

  

  于是

  综上所述,当时,

       当时,

               ········································ 13分

说明:①未指明的范围,不扣分.

②上述情形2有多种解法,如:

法二:连结,并过于点,在中,

  

  

法三:过于点,在中,

  

    

    

 于是在