全国初中数学竞赛预选赛试题(初二)
(考试时间:120分钟,满分140分)
一、选择题:(每小题7分,共42分)
1、已知实数a满足:2004-a+=a,那么a-20042=………… ( )
A、2003 B、2004 C、2005 D、2006
2、如图,在△ABC中,∠C=Rt∠,CD⊥AB于D,在
(1)
DC·AB=AC·BC, (2)
(3)
(4)AC+BC>CD+AB
中正确的个数是 …………………………………………………… ( )
A、4 B、3 C、2 D、1
3、实数a,b,c,d满足:a+b+c+d=1001,ac=bd=4,则:
= ………………………………………… ( )
A、1001 B、2002 C、2003 D、2004
4、在△ABC中,∠A >∠B>∠C,∠A≠90°,画直线使它把 △ABC 分成两部份,且使其中一部分与△ABC 相似,这样的互不平行的直线有( )条……………………………………………………………( )
A、3 B、4 C、5 D、6
5、已知二次函数y=ax2+c,且当x=1时,-4≤y ≤-1,当x=2时,-1≤y≤5,则当x=3时,y的取值范围是…………………………………………( )
A、-1 ≤y ≤20 B、 -4 ≤ y ≤15
C、7 ≤y ≤26
D、≤ y ≤
6、n是一个两位数,它的十位数字与个位数字之和为a,当n分别乘以3,5,7,9后得到四个乘积,如果其每个乘积的各位数的数字之和仍为a,那么这样的两位数有( )个。…………………………………………( )
A、3 B、5 C、7 D、9
二、填空题:(每小题7分,共28分)
7、某电影院的票价是:个人每张6元,每10人一张团体票为40元,学生享
受九折优惠,某校1258名学生看电影(教师免票),学校应向电影院至少付
_________________元钱。
8、利用公式(a2+b2)(c2+d2)=(ac+bd)2+(bc-ad)2 或其它方法找出一组正整数填空:(22+92×32)(42+92×52)=( ) 2+92×( ) 2。
9、如图,梯形ABCD的面积为34cm2,
AE=BF,CE与DF相交于O,△OCD
的面积为11cm2,则阴影部分的面积
为 _ cm2。
10、在表达式S=中, x1、x2、x3、x4 是1、2、3、4的一
种排列(即:x1、x2、x3、x4取1、2、3、4中的某一个数,且x1、x2、x3、x4 互不相同)。则使S为实数的不同排列的种数有 种。
三、(本题满分20分)
某同学买某种铅笔,当他买了x支,付了y元(x、y都是整数)时,营业员说:“你要再多买10支,我就总共收你2元钱,这样相当于每买30支,你可节省2元钱”。求x·y。
四、(本题满分25分)
如图:菱形PQRS内接于矩形ABCD,使得P、Q、R、S为AB、BC、CD、DA上的内点。已知PB=15、BQ=20、PR=30、QS=40、若既约分数
为矩形ABCD的周长,求m+n。
五、(本题满分25分)
1、试设计一种方法,把一个正方形不重复不遗漏地分割成8个正方形(分得的正方形大小可以不相同);又问如何把正方形按上要求分成31个正方形?
2、试设计一种方法,把一个立方体分割成55个立方体(要求:不重复不遗漏,分得的立方体大小可以不相同)。
全国初中数学竞赛预选赛答案
一、1. C; 2.B ; 3. B; 4. D; 5. A; 6. B;
二、7. 4536; 8. 1388,2; 9. 12; 10. 16;
三、根据营业员的话,y的值只能是1或2。 (3分)
(1)当y=1时,则原来每支价格为元,多买10支,每支节省
元。现在每支价格为(
-
)元。设多买10支后共m支,则有(
-
)m=2……(4分),此时m只能取15, 30, 45, 60……。经讨论只有当m=15,x=5时才符合题意。(6分)
(2)当y=2时,则(-
)m=
2 无论m为何整数均不合题意。
(5分)
∴所求x=5、y=1 (2分)
(注:y=2不讨论适当扣分)
四、设AS=x、AP=y ……(2分),由菱形性质知PRSQ,且互相平分,这样得到8个直角三角形,易知PR与SQ的交点是矩形ABCD的中心。由已知可得其中6个三角形的边长分别为15、20、25。由对称性知CQ、CR的长为x、y。则Rt△ASP和Rt△CQR的三边长分别为x、y、25,矩形面积等于8个Rt△的面积之和。则有:
(20+x)(15+y)=6××20×15+2×
xy
(8分)
则有 3x+4y=120 (1)
又 x2+y2=625 (2) (2分)
得 x1=20
x2=
y1=15 y2=
(5分)
当x=20时 BC=x+BQ=40 这与PR=30不合
故
x= y=
(2分)
∴矩形周长为2(15+20+x+y)= (5分)
即:m+n=677 (1分)
五、
1、容易把一个正方形分成42=16个正方形,再把其中位于一角的9个拼成一个正方形,共得:16-9+1=8个正方形 。 (8分)
分成16个正方形后,把其中任意5个分成4个小正方形,共有16-5+5×4=31个正方形。 (8分)
2、把立方体分割成33=27个立方体,再把其中4个各分成23=8个立方体,共27-4+4×23=55个立方体。 (9分)