练3、解:(1)证明:∵直线y=x+4与x轴、y轴相交于A、B两点
∴OA=OB=4 又∵直线x=4经过点(4,0)且垂直于x轴
即直线AN经过A点,且垂直于OA ∴AN为半圆D的切线
|


|
|
|
|

|

|
|
|
|
|
|
|



|
|

|




∴∠1+∠4 即∠0MD=∠ADN
(2)解:由△DNO∽△NDA可得, =
即
=
∴y与x的函数解析式为y= (0﹤x﹤4)
(3)解:当以A、F、N为顶点的三角形与△ADE相似时,则有:
①若∠3=∠AED
在Rt△DNA中∠4+∠3=90°(1) 在△AEDK,∠4+∠AED=135°(2)
由(2)-(1)可得,∠AED=∠3=90°
∴MN平行于是x 轴,此时y=x=2 ∴直线NM的解析式为y=2
②若∠3=∠4
在Rt△DNA中∠4+ ∠3=90° 即2∠4+∠3=180°
∴∠3=∠4=60° 在Rt△DNA中,y=AN=AD·tan60°=2
将y值代入解析式得x= ∴M点坐标为(0,
),N点坐标为(4,2
)
由M、N两点的坐标求得直线MN的解析式为y=x+
∴直线MN的解析式为y=2或 y=x+
练2解. (1)BE=AD………………………………………………………………1分
证明:∵△ABC与△DCE是等边三角形
∴∠ACB=∠DCE=60° CA=CB,CE=CD…………………………………2分
∴∠BCE=∠ACD ∴△BCE≌△ACD……………………………………3分
∴ BE=AD…………………………………………………………………4分
(也可用旋转方法证明BE=AD)
(2) 如图在△CQT中 ∵∠TCQ=30° ∠RQT=60°
∴∠QTC=30° ∴∠QTC=∠TCQ
∴QT=QC=x
∴ RT=3-x ……………………………………5分
∵∠RTS+∠R=90° ∴∠RST=90°…………………………………………6分
∴y=×32 -
(3-x)2=-
(3-x)2+
(0≤x≤3) ……………10分
(不证明∠RST=90°扣2分,不写自变量取值范围扣1分)
(3)C′N·E′M的值不变 ……………………………………………………11分
证明:∵∠ACC′=60°∴∠MCE′+∠NCC′=120°
∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′ ……………………12分
∵∠E′=∠C′ ∴△E′MC∽△C′CN
∴ ∴C′N·E′M=C′C·E′C=
×
=
………………14分
练1解、在Rt△PMN中,∵PM=PN,∠P=90°,
∴∠PMN=∠PNM=45°,
延长AD分别交PM、PN于点G、H,过点G作GF⊥MN于F,过点H作HT⊥MN于T,∵DC=2cm,∴MF=GF=2cm,TN=HT=2cm,
∵MN=8cm,∴MT=6cm,
因此,矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况:
(1)当C点由M点运动到F点的过程中(,如图①所示,设CD与PM交于点E,则重叠部分图形是Rt△MCE,且MC=EC=x,∴
(
)
(2)当C点由F点运动到T点的过程中(),如图②所示,重叠部分是直角梯形MCDG,∵MC=x,MF=2,∴FC=DG=x-2,且DC=2,∴
(
);
(3)当C点由T点运动到N点的过程中(),如图③所示,设CD与PN交于点Q,则重叠部分是五边形MCQHG,∵MC=x,∴CN=CQ=8-x,且DC=2,
∴(
)。
练424绵阳市2005年.
(1) 当点P运动2秒时,AP=2 cm,由∠A=60°,知AE=1,PE=.
······················································································································································ 2分
∴ SΔAPE=. ·························································································································· 4分
(2) ① 当0≤t≤6时,点P与点Q都在AB上运动,设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=,QF=
,AP=t+2,AG=1+
,PG=
.
∴ 此时两平行线截平行四边形ABCD的面积为S=. ······································· 8分
当6≤t≤8时,点P在BC上运动,点Q仍在AB上运动. 设PM与DC交于点G,QN与AD交于点F,则AQ=t,AF=,DF=4-
,QF=
,BP=t-6,CP=10-t,PG=
,
而BD=,故此时两平行线截平行四边形ABCD的面积为S=
.
······················································································································································ 10分
当8≤t≤10时,点P和点Q都在BC上运动. 设PM与DC交于点G,QN与DC交于点F,则CQ=20-2t,QF=(20-2t),CP=10-t,PG=
.
∴ 此时两平行线截平行四边形ABCD的面积为S=.
······················································································································································ 14分
故S关于t的函数关系式为
②(附加题)当0≤t≤6时,S的最大值为;··································································· 1分
当6≤t≤8时,S的最大值为;······················································································· 2分
当8≤t≤10时,S的最大值为;····················································································· 3分
所以当t=8时,S有最大值为 . ······················································································ 4分
(如正确作出函数图象并根据图象得出最大值,同样给4分)