当前位置:首页 -初中数学试卷 - 初中三年级数学试题 - 正文*

综合题——线动型探究题

2014-5-11 0:17:54下载本试卷

练3、解:(1)证明:∵直线y=x+4与x轴、y轴相交于A、B两点

∴OA=OB=4  又∵直线x=4经过点(4,0)且垂直于x轴

即直线AN经过A点,且垂直于OA  ∴AN为半圆D的切线 

y

 
∴AN∥OB 

F

 

 B

 

N

 
∴∠OMN+∠3=180° 

3

 

P

 
又∵OM、MN、NA均为半圆D的切线                   

 1

 

 2

 

  2

 

x

 

A

 

E

 

M

 
∴∠1=∠2= ∠OMN,∠MND=∠AND=∠3 

 4

 

D

 
 ∴∠2+∠MND=90° 则∠MDN=90°

O

 
∴∠4+∠MD0=90°而∠1+∠MD0=90°           

 ∴∠1+∠4  即∠0MD=∠ADN

(2)解:由△DNO∽△NDA可得,  =   即 =    

∴y与x的函数解析式为y= (0﹤x﹤4)

(3)解:当以A、F、N为顶点的三角形与△ADE相似时,则有:

①若∠3=∠AED

在Rt△DNA中∠4+∠3=90°(1)  在△AEDK,∠4+∠AED=135°(2)

由(2)-(1)可得,∠AED=∠3=90°

∴MN平行于是x 轴,此时y=x=2  ∴直线NM的解析式为y=2

②若∠3=∠4

在Rt△DNA中∠4+ ∠3=90° 即2∠4+∠3=180°

∴∠3=∠4=60°  在Rt△DNA中,y=AN=AD·tan60°=2  

将y值代入解析式得x=  ∴M点坐标为(0,),N点坐标为(4,2

由M、N两点的坐标求得直线MN的解析式为y=x+

∴直线MN的解析式为y=2或 y=x+

练2解. (1)BE=AD………………………………………………………………1分

     证明:∵△ABC与△DCE是等边三角形

∴∠ACB=∠DCE=60° CA=CB,CE=CD…………………………………2分

∴∠BCE=∠ACD ∴△BCE≌△ACD……………………………………3分

         ∴ BE=AD…………………………………………………………………4分

(也可用旋转方法证明BE=AD)

(2)            如图在△CQT中 ∵∠TCQ=30° ∠RQT=60°

              ∴∠QTC=30° ∴∠QTC=∠TCQ

                   ∴QT=QC=x

                   ∴ RT=3-x ……………………………………5分

∵∠RTS+∠R=90°  ∴∠RST=90°…………………………………………6分

∴y=×32(3-x)2=-(3-x)2(0≤x≤3) ……………10分

(不证明∠RST=90°扣2分,不写自变量取值范围扣1分)

(3)C′N·E′M的值不变 ……………………………………………………11分

证明:∵∠ACC′=60°∴∠MCE′+∠NCC′=120°

      ∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′ ……………………12分

        ∵∠E′=∠C′  ∴△E′MC∽△C′CN

       ∴ ∴C′N·E′M=C′C·E′C=×=………………14分

练1解、在Rt△PMN中,∵PM=PN,∠P=90°,

∴∠PMN=∠PNM=45°,

延长AD分别交PM、PN于点G、H,过点G作GF⊥MN于F,过点H作HT⊥MN于T,∵DC=2cm,∴MF=GF=2cm,TN=HT=2cm,

∵MN=8cm,∴MT=6cm,

因此,矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况:

(1)当C点由M点运动到F点的过程中(,如图①所示,设CD与PM交于点E,则重叠部分图形是Rt△MCE,且MC=EC=x,∴

(2)当C点由F点运动到T点的过程中(),如图②所示,重叠部分是直角梯形MCDG,∵MC=x,MF=2,∴FC=DG=x-2,且DC=2,∴);

(3)当C点由T点运动到N点的过程中(),如图③所示,设CD与PN交于点Q,则重叠部分是五边形MCQHG,∵MC=x,∴CN=CQ=8-x,且DC=2,

)。

 

练424绵阳市2005年. (1) 当点P运动2秒时,AP=2 cm,由∠A=60°,知AE=1,PE=.

······················································································································································ 2分

SΔAPE=. ·························································································································· 4分

(2) ① 当0≤t≤6时,点P与点Q都在AB上运动,设PMAD交于点GQNAD交于点F,则AQ=tAF=QF=AP=t+2,AG=1+PG=.

∴ 此时两平行线截平行四边形ABCD的面积为S=. ······································· 8分

当6≤t≤8时,点PBC上运动,点Q仍在AB上运动. 设PMDC交于点GQNAD交于点F,则AQ=tAF=DF=4-QF=BP=t-6,CP=10-t,PG=

BD=,故此时两平行线截平行四边形ABCD的面积为S=.

······················································································································································ 10分

当8≤t≤10时,点P和点Q都在BC上运动. 设PMDC交于点GQNDC交于点F,则CQ=20-2tQF=(20-2t)CP=10-tPG=.

∴ 此时两平行线截平行四边形ABCD的面积为S=.

······················································································································································ 14分

S关于t的函数关系式为

②(附加题)当0≤t≤6时S的最大值为;··································································· 1分

当6≤t≤8时,S的最大值为;······················································································· 2分

当8≤t≤10时,S的最大值为;····················································································· 3分

所以当t=8时,S有最大值为 . ······················································································ 4分

(如正确作出函数图象并根据图象得出最大值,同样给4分)