当前位置:首页 -初中数学试卷 - 初中数学中考试卷 - 正文*

2004年中考新型题

2014-5-11 0:12:43下载本试卷

1、小张将自己参加工作后第一次工资收入400元钱,按一年定期存入银行,到期后,小张支取了200元钱捐给希望工程,剩下的200元钱和应得的利息全部按一年定期存入银行。若存款年利率保持不变,到期后可得本金和利息共212.16元。求这种存款方式的年利率

2、.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.

(1)求降低的百分率;

(2)若小红家有4人,明年小红家减少多少农业税?

(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税.

解:(1)设降低的百分率为x

依题意有          解得x1=0.2=20%,x2 =1.8(舍去)

    (2)小红全家少上缴税 25×20%×4=20(元)

    (3)全乡少上缴税 16000×25×20%=80000(元)

3、某中学在一次法律知识测试中,抽取部分学生成绩(分数为整

数,满分100分)将所得得数据整理后,画出频率分布直方图,已

知图中从左到右的三个小组的频率分别为0.04,0.06,0.82,第二

小组的频数为3.

(1)本次测试中抽样的学生有多少人?

(2)分数在90.5~100.5这一组的频率是多少?有多少人?           图6

(3)若这次成绩在80分以上(含80分)为优秀,则优秀率不低于多少?

解:(1)50  (2)4  (3)90%    

4、某商店以2400元购进某种盒装茶叶,第一个月每盒按进价增加20%作为售价,售出50盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶.在整个买卖过程中盈利350元,求每盒茶叶的进价.

5、.仔细阅读下列材料,然后解答问题。

某商场在促销期间规定:商场内所有商品按标价的80%出售。同时当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:

消费金额(元)的范围

获得奖卷的金额(元)

30

60

100

130

根据上述促销方法,顾客在商场内购物可以获得双重优惠。例如,购买标价为450元的商品,则消费金额为元,获得的优惠额为元。设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价。

(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?

(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?

6、.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm,则此光盘的直径是_7____cm.

7、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?

  

答题要求:(1)请提供四条信息;(2)不必求函数的解析式.

解:(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;

    (3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;

    (5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;

    (7)6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价相同;

  答对一条给2分

  (注:此题答案不唯一,以上答案仅供参考.若有其它答案,只要是根据图象得出的信息,并且叙述正确请酌情给分)

8、某食品批发部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).

  (1)求所获销售利润y(元)与x(箱)之间的函数关系式;

  (2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?

解法一:根据题意,得y=16×20%·x+20×25%×

                =-0.8x+2500.  ……4分

     解法二:y=16·x·20%+(10000-16x)·25%=-0.8x+2500.

    (2)解法一:由题意知,  解得250≤x≤300.

         由(1)知y=-0.8x+2500,∵k=-0.8<0,∴y随x的增大而减小.

         ∴当x=250时,y值最大,此时y=-0.8×250+2500=2300(元).

         ∴==300(箱).  ……9分

         答:当购进甲种酸奶250箱,乙种酸奶300箱时,所获销售利润最大,最大销售利润为2300元.  ……10分

  解法二:因为16×20%<20×25%,即乙种酸奶每箱的销售利润大于甲种酸奶的销售利润,因此最大限度的购进乙种酸奶时所获销售利润最大,即购进乙种酸奶300箱,

  则x==250(箱).

  由(1)知y=-0.8x+2500,

  ∴当x=250时,y值最大,此时y=-0.8×250+2500=2300(元).

9、光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.

两地区与该农机租赁公司商定的每天的租赁价格见下表:

每台甲型收割机的租金

每台乙型收割机的租金

A地区

1800元

1600元

B地区

1600元

1200元

(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求yx间的函数关系式,并写出x的取值范围;

(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说

明有多少种分派方案,并将各种方案设计出来;

(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提

出一条合理建议.

解:(1)若派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台;派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台.  …………………………………………………………………………2分

       ∴y=1600x+1800(30-x)+1200(30-x)+1600(x-10)=200x+74000.

       x的取值范围是:10≤x≤30(x是正整数).……………………………………5分

    (2)由题意得200x+74000≥79600,

       解不等式得x≥28.由于10≤x≤30,∴x取28,29,30这三个值,

       ∴有3种不同分配方案. ……………………………………………………7分

①   当x=28时,即派往A地区甲型收割机2台,乙型收割机28台;派往B

地区甲型收割机18台,乙型收割机2台.

②   当x=29时,即派往A地区甲型收割机1台,乙型收割机29台;派往B

地区甲型收割机19台,乙型收割机1台.

 ③ 当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区. ……………………………………………………………10分

    (3)由于一次函数y=200x+74000的值y是随着x的增大而增大的,所以,当x=30时,y取得最大值.如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时,y=6000+74000=80000.

建议农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割要全部

派往B地区,可使公司获得的租金最高.…………………………………12分

10、“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.

(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.

(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.

解:(1)设甲种型号手机要购买x部,乙种型号手机购买y部,丙种型号手机购买z部,

根据题意,得:                           ………………(1分)

 

                                  ………………(1分)

 

答:有两种购买方法:甲种手机购买30部,乙种手机购买10部;或甲种手机购买20部,乙种手机购买20部. …………………………………………………………………………………(1分)

(2)根据题意,得:              ………………………………………(1分)

 

  

解得:               ………………………………………………(1分)

 

答:若甲种型号手机购买26部手,则乙种型号手机购买6部,丙种型号手机购买8部;

若甲种型号手机购买27部手,则乙种型号手机购买7部,丙种型号手机购买6部;

若甲种型号手机购买28部手,则乙种型号手机购买8部,丙种型号手机购买4部;

11、读一读,想一想,做一做:

⑴国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.

①   在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.

②   如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互相不受对方控制(在图丙中的某四个小方格中标出字母Q即可).


⑵现有足够的2×2,3×3的正方形和2×3的矩形图片A、B、C(如图),现从中各选取若干个图片拼成不同的图形.请你在下面给出的方格纸中,按下列要求分别画出一种拼法示意图(说明:下面给出的方格纸中,每个小正方形的边长均为1.拼出的图形,要求每两个图片之间既无缝隙,也不重叠.画图必须保留拼图的痕迹).

①选取A型、B型两种图片各1块,C型图片2块,在下面的图1中拼成一个正方形;

②选取A型图片4块,B型图片1块,C型图片4块,

在下面的图2中拼成一个正方形;

③选取A型图片3块,B型图片1块,再选取若干块

C型图片,在下面的图3中拼成一个矩形.