当前位置:首页 -初中数学试卷 - 初中数学中考试卷 - 正文*

初中毕业生学业考试数学试卷

2014-5-11 0:12:18下载本试卷

初中毕业生学业考试数学试卷

说明:1.全卷共8页,考试时间90分钟,满分120分.

2.下列公式供解题时参考:

1)扇形弧长公式:

2)一组数据的方差公式:

一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的,把所选答案的编号填写在题目后面的括号内.

1.观察下面图案,在A,B,C,D四幅图案中,能通过图案(1)平移得到的是(  )


2.下列事件中,必然事件是(  )

A.中秋节晚上能看到月亮        B.今天考试小明能得满分

C.早晨的太阳从东方升起        D.明天气温会升高

3.如图1,晚上小亮在路灯下散步,在小亮由处走

处这一过程中,他在地上的影子(  )

A.逐渐变短           B.逐渐变长       

C.先变短后变长       D.先变长后变短

4.比较的大小,正确的是(  )

A.      B.

C.           D.

5.圆心距为6的两圆相外切,则以这两个圆的半径为根的一元二次方程是(  )

A.      B.

C.      D.

二、填空题:每小题3分,共30分.答案填在横线上.

6.计算     

7.如图2,在中,分别是的中点,

,则   cm.

8.函数的自变量的取值范围是     

9.近视眼镜的度数(度)与镜片焦距(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数与镜片焦距之间的函数关系式为      

10.不等式组的解为      

11.在中国地理地图册上,连结上海、香港、台湾三地构

成一个三角形,用刻度尺测得它们之间的距离如图3所示.

飞机从台湾直飞上海的距离约为1286千米,那么飞机从台

湾绕道香港再到上海的飞行距离约为     千米.

12.小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是    

13.将4个数排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,则     

14.如图4,已知为等腰三角形纸片的底边,

.将此三角形纸片沿

开,得到两个三角形,若把这两个三角形拼成一个平

面四边形,则能拼出中心对称图形      个.


15.如图5,有一木质圆柱形笔筒的高为,底面半径为,现要围绕笔筒的

表面由在圆柱的同一轴截面上)镶入一条银色金属线作为装

饰,这条金属线的最短长度是        

三、解答下列各题:本题有10小题,共75分.解答应写出文字说明、推理过程或演算步骤.

16.本题满分6分.

计算:

17.本题满分6分.

在市区内,我市乘坐出租车的价格(元)与路程(km)的函数关系图象如图6所示.

(1)请你根据图象写出两条信息;

(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路程.


18.本题满分6分.

计算:

19.本题满分6分.

如图7,是平行四边形的对角线.

(1)请按如下步骤在图7中完成作图(保留作图痕迹):

①分别以为圆心,以大于长为半径画弧,弧在两侧的交点分别为

②连结分别与交于点

(2)求证:

20.本题满分7分.

甲、乙两位同学本学年11次数学单元测验成绩(整数)的统计如图8所示:

(1)分别求他们的平均分;

(2)请你从中挑选一人参加数学“学用杯”竞赛,并说明你挑选的理由.

文本框: 测验次数


21.本题满分7分.

如图9,点在以为直径的上,,设

(1)求弦的长;

(2)如果,求的最大值,并求出此时的值.


22.本题满分8分.

已知二次函数图象的顶点是,且过点

(1)求二次函数的表达式,并在图10中画出它的图象;

(2)求证:对任意实数,点都不在这个

二次函数的图象上.

23.本题满分8分.

如图11,中,分别在上,沿对折,使点落在上的点处,且

(1)求的长;

(2)判断四边形的形状,并证明你的结论.


24.本题满分10分.

梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).

(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;

(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.

25.本题满分11分.

如图12,直角梯形中,,动点从点出发,沿方向移动,动点从点出发,在边上移动.设点移动的路程为,点移动的路程为,线段平分梯形的周长.

(1)求的函数关系式,并求出的取值范围;

(2)当时,求的值;

(3)当不在边上时,线段能否平分梯形的面积?若能,求出此时的值;若不能,说明理由.

数学试卷参考答案与评分意见

一、选择题:每小题3分,共15分.每小题给出四个答案,其中有一个是正确的,把所选答案的编号填写在题目后面的括号内.

1.C;  2.C;  3.C;  4.A;  5.B.

二、填空题:每小题3分,共30分.答案填在横线上.

6.  7.  8.   9. 10.  11.   12.

13.   14.  15.

三、解答下列各题:本题有10小题,共75分.解答应写出文字说明、推理过程或演算步骤.

16.本题满分6分

  解:原式····················································································· 4分

       .······································································································ 6分

17.本题满分6分

  解:(1)在0到2km内都是5元;2km后,每增加0.625km加1元.····················· 2分

(答案不唯一)

  (2)设射线的表达式为.依题意,得

   解得:.得.·································· 5分

  将代入上式,得

  所以小明家离学校7km.························································································ 6分

18.本题满分6分.

  解:原式························································ 4分

       ······························································································ 5分

       .······································································································· 6分

19.本题满分6分.

  (1)作图如右······························································· 2分

  (2)证明:根据作图知,的垂直平分线,··· 3分

  所以,且

  因为是平行四边形,所以.···· 4分

  所以.············································· 5分

  所以.··························································· 6分

20.本题满分7分.

  解:(1)

  .······························ 4分

  (2)应选甲同学参加比赛.因为甲超过平均分的次数比乙多,比乙更容易获得高分

 (也可以从众数等方面去说明).············································································· 7分

  (选乙时,分析图形直接得出或通过计算方差等说明乙的稳定性比甲好,也给满分)

21.解:(1)连结,··············· 2分

  所以,······ 3分

  得

(也可以根据求解)··································································· 4分

  (2)由于,所以,················································ 5分

  得,所以的最大值为25,此时.·········································· 7分

22.本题满分8分.

  解:(1)依题意可设此二次函数的表达式为,····························· 2分

  又点在它的图象上,可得,解得.·································· 3分

  所求为.·················································································· 4分

  令,得

  画出其图象如右.·················································· 5分

  (2)证明:若点在此二次函数的图象上,

  得.·············································· 7分

  方程的判别式:,该方程无解.

  所以原结论成立.·················································· 8分

23.本题满分8分.

  解:(1)因为

所以是直角三角形,

  又,所以···· 2分

  由,得,·········································································· 3分

  又,所以,所以,························· 4分

  所以,得.······························································ 5分

  (2)四边形是菱形.················································································· 6分

  证明:由(1)知,,所以是平行四边形,············· 7分

  又,所以四边形是菱形.··························································· 8分

24.本题满分10分.

  解:(1)(分钟),

  不能在限定时间内到达考场.············································································· 4分

  (2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.···················································································································· 5分

  先将4人用车送到考场所需时间为(分钟).

  0.25小时另外4人步行了1.25km,此时他们与考场的距离为(km)

  ······························································································································ 7分

  设汽车返回后先步行的4人相遇,

  ,解得

  汽车由相遇点再去考场所需时间也是.······················································· 9分

  所以用这一方案送这8人到考场共需

  所以这8个个能在截止进考场的时刻前赶到.······················································· 10分

  方案2:8人同时出发,4人步行,先将4人用车送到离出发点处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场.···························································· 6分

  由处步行前考场需

  汽车从出发点到处需先步行的4人走了

  设汽车返回(h)后与先步行的4人相遇,则有,解得

······························································································································ 8分

  所以相遇点与考场的距离为

  由相遇点坐车到考场需

  所以先步行的4人到考场的总时间为

  先坐车的4人到考场的总时间为

  他们同时到达,则有,解得

  将代入上式,可得他们赶到考场所需时间为(分钟).

  

  他们能在截止进考场的时刻前到达考场.·························································· 10分

  其他方案没有计算说明可行性的不给分.

25.本题满分11分.

  解:(1)过,则,可得

  所以梯形的周长为18.·············································································· 1分

  平分的周长,所以,····························································· 2分

  因为,所以

  所求关系式为:.·············· 3分

  (2)依题意,只能在边上,

  

  因为,所以,所以,得··························· 4分

  ,即

  解方程组  得.··················································· 6分

  (3)梯形的面积为18.············································································· 7分

  当不在边上,则

  ()当时,边上,

  如果线段能平分梯形的面积,则有········································· 8分

  可得:解得舍去).·········································· 9分

  ()当时,点边上,此时

  如果线段能平分梯形的面积,则有

  可得此方程组无解.

  所以当时,线段能平分梯形的面积.········································· 11分