初中毕业生学业考试数学试卷
说明:1.全卷共8页,考试时间90分钟,满分120分.
2.下列公式供解题时参考:
(1)扇形弧长公式:.
(2)一组数据的方差公式:.
一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的,把所选答案的编号填写在题目后面的括号内.
1.观察下面图案,在A,B,C,D四幅图案中,能通过图案(1)平移得到的是( )
![]() |
2.下列事件中,必然事件是( )
A.中秋节晚上能看到月亮 B.今天考试小明能得满分
C.早晨的太阳从东方升起 D.明天气温会升高
3.如图1,晚上小亮在路灯下散步,在小亮由处走
到处这一过程中,他在地上的影子( )
A.逐渐变短 B.逐渐变长
C.先变短后变长 D.先变长后变短
4.比较的大小,正确的是( )
A. B.
C. D.
5.圆心距为6的两圆相外切,则以这两个圆的半径为根的一元二次方程是( )
A. B.
C. D.
二、填空题:每小题3分,共30分.答案填在横线上.
6.计算
.
7.如图2,在中,
分别是
的中点,
若,则
cm.
8.函数的自变量
的取值范围是
.
9.近视眼镜的度数(度)与镜片焦距
(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数
与镜片焦距
之间的函数关系式为 .
10.不等式组
的解为
.
11.在中国地理地图册上,连结上海、香港、台湾三地构
成一个三角形,用刻度尺测得它们之间的距离如图3所示.
飞机从台湾直飞上海的距离约为1286千米,那么飞机从台
湾绕道香港再到上海的飞行距离约为 千米.
12.小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .
13.将4个数
排成2行、2列,两边各加一条竖直线记成
,定义
,上述记号就叫做2阶行列式.若
,则
.
14.如图4,已知为等腰三角形纸片
的底边,
.将此三角形纸片沿
剪
开,得到两个三角形,若把这两个三角形拼成一个平
面四边形,则能拼出中心对称图形 个.
![]() |
15.如图5,有一木质圆柱形笔筒的高为,底面半径为
,现要围绕笔筒的
表面由至
(
在圆柱的同一轴截面上)镶入一条银色金属线作为装
饰,这条金属线的最短长度是 .
三、解答下列各题:本题有10小题,共75分.解答应写出文字说明、推理过程或演算步骤.
16.本题满分6分.
计算:.
17.本题满分6分.
在市区内,我市乘坐出租车的价格(元)与路程
(km)的函数关系图象如图6所示.
(1)请你根据图象写出两条信息;
(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路程.
![]() |
18.本题满分6分.
计算:.
19.本题满分6分.
如图7,是平行四边形
的对角线.
(1)请按如下步骤在图7中完成作图(保留作图痕迹):
①分别以为圆心,以大于
长为半径画弧,弧在
两侧的交点分别为
;
②连结分别与
交于点
.
(2)求证:
.
20.本题满分7分.
甲、乙两位同学本学年11次数学单元测验成绩(整数)的统计如图8所示:
(1)分别求他们的平均分;
(2)请你从中挑选一人参加数学“学用杯”竞赛,并说明你挑选的理由.
![]() ![]() |
21.本题满分7分.
如图9,点在以
为直径的
上,
于
,设
.
(1)求弦的长;
(2)如果,求
的最大值,并求出此时
的值.
![]() |
22.本题满分8分.
已知二次函数图象的顶点是
,且过点
.
(1)求二次函数的表达式,并在图10中画出它的图象;
(2)求证:对任意实数,点
都不在这个
二次函数的图象上.
23.本题满分8分.
如图11,中,
,
分别在
上,沿
对折,使点
落在
上的点
处,且
.
(1)求的长;
(2)判断四边形的形状,并证明你的结论.
![]() |
24.本题满分10分.
梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).
(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;
(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.
25.本题满分11分.
如图12,直角梯形中,
,动点
从点
出发,沿
方向移动,动点
从点
出发,在
边上移动.设点
移动的路程为
,点
移动的路程为
,线段
平分梯形
的周长.
(1)求与
的函数关系式,并求出
的取值范围;
(2)当时,求
的值;
(3)当
不在
边上时,线段
能否平分梯形
的面积?若能,求出此时
的值;若不能,说明理由.
数学试卷参考答案与评分意见
一、选择题:每小题3分,共15分.每小题给出四个答案,其中有一个是正确的,把所选答案的编号填写在题目后面的括号内.
1.C; 2.C; 3.C; 4.A; 5.B.
二、填空题:每小题3分,共30分.答案填在横线上.
6. 7.
8.
9.
10.
11.
12.
13. 14.
15.
三、解答下列各题:本题有10小题,共75分.解答应写出文字说明、推理过程或演算步骤.
16.本题满分6分
解:原式····················································································· 4分
.······································································································ 6分
17.本题满分6分
解:(1)在0到2km内都是5元;2km后,每增加0.625km加1元.····················· 2分
(答案不唯一)
(2)设射线的表达式为.依题意,得
解得:
.得
.·································· 5分
将代入上式,得
.
所以小明家离学校7km.························································································ 6分
18.本题满分6分.
解:原式························································ 4分
······························································································ 5分
.······································································································· 6分
19.本题满分6分.
(1)作图如右······························································· 2分
(2)证明:根据作图知,是
的垂直平分线,··· 3分
所以,且
.
因为是平行四边形,所以
.···· 4分
所以.············································· 5分
所以.··························································· 6分
20.本题满分7分.
解:(1).
.······························ 4分
(2)应选甲同学参加比赛.因为甲超过平均分的次数比乙多,比乙更容易获得高分
(也可以从众数等方面去说明).············································································· 7分
(选乙时,分析图形直接得出或通过计算方差等说明乙的稳定性比甲好,也给满分)
21.解:(1)连结
,··············· 2分
所以,······ 3分
得.
(也可以根据求解)··································································· 4分
(2)由于,所以
,················································ 5分
得,所以
的最大值为25,此时
.·········································· 7分
22.本题满分8分.
解:(1)依题意可设此二次函数的表达式为,····························· 2分
又点在它的图象上,可得
,解得
.·································· 3分
所求为.·················································································· 4分
令
,得
画出其图象如右.·················································· 5分
(2)证明:若点在此二次函数的图象上,
则.
得.·············································· 7分
方程的判别式:,该方程无解.
所以原结论成立.·················································· 8分
23.本题满分8分.
解:(1)因为,
所以是直角三角形,
,
又,所以
···· 2分
由,得
,·········································································· 3分
又,所以
,所以
,························· 4分
所以,得
.······························································ 5分
(2)四边形是菱形.················································································· 6分
证明:由(1)知,,所以
是平行四边形,············· 7分
又,所以四边形
是菱形.··························································· 8分
24.本题满分10分.
解:(1)(分钟),
,
不能在限定时间内到达考场.············································································· 4分
(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.···················································································································· 5分
先将4人用车送到考场所需时间为(分钟).
0.25小时另外4人步行了1.25km,此时他们与考场的距离为(km)
······························································································································ 7分
设汽车返回后先步行的4人相遇,
,解得
.
汽车由相遇点再去考场所需时间也是.······················································· 9分
所以用这一方案送这8人到考场共需.
所以这8个个能在截止进考场的时刻前赶到.······················································· 10分
方案2:8人同时出发,4人步行,先将4人用车送到离出发点的
处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场.···························································· 6分
由处步行前考场需
,
汽车从出发点到处需
先步行的4人走了
,
设汽车返回(h)后与先步行的4人相遇,则有
,解得
,
······························································································································ 8分
所以相遇点与考场的距离为.
由相遇点坐车到考场需.
所以先步行的4人到考场的总时间为,
先坐车的4人到考场的总时间为,
他们同时到达,则有,解得
.
将代入上式,可得他们赶到考场所需时间为
(分钟).
.
他们能在截止进考场的时刻前到达考场.·························································· 10分
其他方案没有计算说明可行性的不给分.
25.本题满分11分.
解:(1)过作
于
,则
,可得
,
所以梯形的周长为18.·············································································· 1分
平分
的周长,所以
,····························································· 2分
因为
,所以
,
所求关系式为:.·············· 3分
(2)依题意,只能在
边上,
.
,
因为,所以
,所以
,得··························· 4分
,即
,
解方程组 得
.··················································· 6分
(3)梯形的面积为18.············································································· 7分
当不在
边上,则
,
()当
时,
在
边上,
.
如果线段能平分梯形
的面积,则有
········································· 8分
可得:解得
(
舍去).·········································· 9分
()当
时,点
在
边上,此时
.
如果线段能平分梯形
的面积,则有
,
可得此方程组无解.
所以当时,线段
能平分梯形
的面积.········································· 11分