当前位置:首页 -初中数学试卷 - 初中数学中考试卷 - 正文*

中考数学不等式

2014-5-11 0:12:25下载本试卷

中考数学不等式

〖知识点〗

不等式概念,不等式基本性质,不等式的解集,解不等式,不等式组,不等式组的解集,解不等式组,一元一次不等式,一元一次不等式组。

大纲要求

1.理解不等式,不等式的解等概念,会在数轴上表示不等式的解;

2.理解不等式的基本性质,会应用不等式的基本性质进行简单的不等式变形,会解一元一次不等式;

3.理解一元一次不等式组和它的解的概念,会解一元一次不等式组;

4.能应用一元一次不等式(组)的知识分析和解决简单的数学问题和实际问题。

内容分析

一元一次不等式、一元一次不等式组的解法

   (1)只含有一个未知数,并且未知数的次数是1,系数不为零的不等式,叫做一元一次不等式.

  解一元一次不等式的一般步骤是去分母、去括号、移项、合并同类项和系数化成1.要特别注意,不等式的两边都乘以(或除以)同一个负数,要改变不等号的方向.

  (2)解一元一次不等式组的一般步骤是:

  (i)先求出这个不等式组中各个一元一次不等式的解集;

  (ii)再利用数轴确定各个解集的公共部分,即求出了这个一元一次不等式组的解集.

考查重点与常见题型

考查解一元一次不等式(组)的能力,有关试题多为解答题,也出现在选择题,填空题中。

考查题型

1.下列式子中是一元一次不等式的是(  )

(A)-2>-5  (B)x2>4    (C)xy>0      (D)–x< -1

2.下列说法正确的是(  )

(A)  不等式两边都乘以同一个数,不等号的方向不变;

(B)  不等式两边都乘以同一个不为零的数,不等号的方向不变;

(C)  不等式两边都乘以同一个非负数,不等号的方向不变;

(D)  不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

3.对不等式的两边进行变形,使不等号方向改变,可采取的变形方法是(   )

(A)加上同一个负数      (B)乘以同一个小于零的数


(C)除以同一个不为零的数   (D) 乘以同一个非正数

4.在数轴上表示不等式组 的解,其中正确的是(  )

5.下列不等式组中,无解的是(  )

(A)  (B)  (C)   (D)  

6.若a<b  则下列不等式中正确的是(  )

(A)a-b>0    (B)a+b<0    (C)ac<bc     (D)-a> -b

7.解下列不等式(组)

(1)x-<2 +       (2)  

考点训练:

1. 以知a>b用”>”或”<”连接下列各式;

(1)a-3 ---- b-3, (2)2a ----- 2b, (3)- ----- - (4)4a-3 ---- 4b-3  (5)a-b --- 0

2. 判断题:

(1) 若 a>b 则< (   )  (2) 若a>b 则a>b (   )

(3)若ac >bc 则 a>b (   )  (4)若> 则a>b  (   ) 

3.a,b是已知数,当a>0时,不等式ax+b<0的解集为------------, 当a<0不等式ax+b<0的解集为----------------

4.已知正整数x满足<0 ,则代数式(x-2)1999 - 的值是----------------.

5.解不等式x-≥-1,将解集在数轴上表示出来,且写出它的正整数解

6.解不等式组  

7. x为何值时,代数式-3(x+4)的值是:(1)非负数(2)不大于零

8.已知三角形三边长分别为3,(1-2a),8,试求a的取值范围。

解题指导:           

1. 解不等式1->,并说明每一步的理由。

2. 比较x2-4x-1与x2-6x+3的大小。

3. 已知不等式5(x-2)+8 < 6(x-1)+7的最小整数解为方程2x-ax=3的解,求代数式4a-的值。

4. 求不等式组的整数解

5. 已知方程组的解为正数,求(1)a的取值范围。                     (2)化简4a+5-a-4

*6.a、b为任意实数。解关于x的不等式a(x+b2)>b(x+a2

独立训练:               

1.用不等式表示:x的与5的差小于1为________

2.不等式5x-17≤0的正整数解是-------------_;不等式组                       的解集是--------------

3.代数式1-的值不大于的值,那么的取值范围是_____________.


4.不等式组的解集在数轴上的表示是( )

5.如果0<x<1则,x,x2 这三个数的大小关系可表示为( )

(A)x< < x2  (B)x <x2<   (C) <x<x2  (D) x2<x<

6.如果方程(a-2)x= -3的解是正数,那么(  )

(A)a>0   (B)a<0   (C)a<2    (D)a>2

7.已知不等式组 的整数解满足方程3(x+a)-5a= -2,求代数式633(a2+)的值。

8.解不等式-1≤< 4

9.不等式组的解5<x<22是求a,b的值

10.解不等式 3 <2x+1 < 5       11.解不等式-x2-3x>