(11)不等式与不等式组的应用
〖考试内容〗
一元一次不等式的应用,一元一次不等式组的应用.
〖考试要求〗
能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题.
〖考点复习〗
[例1]某次“迎奥运”知识竞赛中共有20道题,对于每一道题,答对了10分,答错了或不答扣5分,至少要答对( )道题,其得分才会不少于95分?
(A)14 (B)13 (C)12 (D)11
[例2]根据下图所示,对a、b、c三中物体的重量判断正确的是 ( )
A、a<c B、a<b C、a>c D、b<c
[例3]某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x张.
(1)写出零星租碟方式应付金额y1(元)与租碟数量x(张)之间的函数关系式;(2分)
(2)写出会员卡租碟方式应付金额y2(元 )与租碟数量x(张)之间的函数关系式;(2分)
(3)小彬选取哪种租碟方式更合算?(4分)
[例4]某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:
饮料 每千克含量 | 甲 | 乙 |
A(单位:千克) | 0.5 | 0.2 |
B(单位:千克) | 0.3 | 0.4 |
(1)假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集.
(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式.并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额是多少?
〖考题训练〗
1.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了__________道题.
2.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )
3.苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:
①每亩水面的年租金为500元,水面需按整数亩出租;
②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;
④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
(1)若租用水面n亩,则年租金共需 元;
(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润:收益—成本);
(3)李大爷现有资金25000元,他准备再向银行贷不超过25000元的款。用于蟹虾混合养殖。已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元.可使年利润超过35000元?
〖课后作业〗
1.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么得奖至少应选对( )道题。
A、18 B、19 C、20 D、21
2.设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大的顺序排列为( )
A、○□△ B、○△□ C、□○△ D、△□○
3.(2005福州)请你填小健同学解答以下问题:
![]() |
4.七(2)班共有50名学生,老师安排每人制作一件A型或B型的陶艺品,学校现有甲种制作材料36㎏,乙种制作材料29㎏,制作A、B两种型号的陶艺品用料情况如下表:
需甲种材料 | 需乙种材料 | |
1件A型陶艺品 | 0.9kg | 0.3 kg |
1件B型陶艺品 | 0.4 kg | 1 kg |
(1)设制作B型陶艺品x件,求x的取值范围;
(2)请你根据学校现有材料,分别写出七(2)班制作A型和B型陶艺品的件数.