中考数学分类解析—旋转题
旋转变换定义 设α是一个定角,O是一个定点,R是平面上的一个变换,它把点O仍变到O(不动点),而把平面图形F上任一点X变到X’,使得OX‘=OX,且∠XOX’=α,则R叫做绕中心O,旋转角为α的旋转变换。记为XX‘,图形F
F’
。
其中α<0时,表示∠XOX‘的始边OX到终边OX’的旋转方向为顺时针方向;α>0时,为逆时针方向。
主要性质: 在旋转变换下,对应线段相等,对应直线的夹角等于旋转角。
应用:求角度、求弧长、求面积、证明线段相等、证明角相等、证明位置关系
解题关键:要抓住图形变换过程中的几何不变性即旋转不变性、数值不变性等等
例题分析:
1.(2005江苏苏州)右图可以看作是一个等腰直角三角形旋转若干次而生成的则
每次旋转的度数可以是( C )
A.900 B.600
C.450 D.300
2.(2005山东威海) 如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120˚,旋转二次得到右边的图形.
下列图形中,不能通过上述方式得到的是 ( D )
![]() |
3.(2005湖北荆州) 如图,王虎使一长为4
,宽为3
的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为
,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为( C )
A.10 B.
C.
D.
4.(2005无锡) 已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长.
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.
解:(1)①S阴影=
②连结PP′,证△PBP′为等腰直角三角形,从而PC=6;
(2)将△PAB绕点B顺时针旋转90°到△P′CB的位置,由勾股逆定理证出∠P′CP=90°,再证∠BPC+∠APB=180°,即点P在对角线AC上.
4.(2005福建漳州) 如图:已知在Rt△ABC中,∠ABC=90°,∠C=60°,边AB=6cm.
(1) 求边AC和BC的值;
(2) 求以直角边AB所在的直线l为轴旋转一周所得的几何体的侧面积.
(结果用含π的代数式表示)
解:(1)AC= cm,BC=
cm
(2)所求几何体的侧面积S=(
)
5.(2005江西) 如下图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合。这样,正半轴上的整数就与圆周上的数字建立了一种对应关系。
(1)圆周上数字a 与数轴上的数5对应,则a=_________;
(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示)。
解:(1)a=2,(2)3n+1
.5.(2005河北课改区) 实验与推理如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
⑴如图14―1,当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是 ;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ;
③请证明你的上述两猜想。
⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系。
解:⑴①DE=EF;②NE=BF。
③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,
∴DN=EB
∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF
∴△DNE≌△EBF
∴ DE=EF,NE=BF
⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时,DE=EF。
7.(2005泰州) 图1是边长分别为4和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连结AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.(4分)
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.(5分)
(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设∠AC C′=α(30°<α<90°=(图4);
探究:在图4中,线段C′N·E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N·E′M的值,如果有变化,请你说明理由.(4分)
解:(1)BE=AD
证明:∵△ABC与△DCE是等边三角形
∴∠ACB=∠DCE=60° CA=CB,CE=CD ∴∠BCE=∠ACD ∴△BCE≌△ACD
∴ BE=AD(也可用旋转方法证明BE=AD)
(2)如图在△CQT中 ∵∠TCQ=30° ∠RQT=60° ∴∠QTC=30°
∴∠QTC=∠TCQ ∴QT=QC=x ∴ RT=3-x
∵∠RTS+∠R=90° ∴∠RST=90°
∴y=×32 -
(3-x)2=-
(3-x)2+
(0≤x≤3)
(3)C′N·E′M的值不变 证明:∵∠ACC′=60°∴∠MCE′+∠NCC′=120°
∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′ ∵∠E′=∠C′ ∴△E′MC∽△C′CN
∴ ∴C′N·E′M=C′C·E′C=
×
=
8.(2005湖北武汉课改区) 将两块含30°角且大小相同的直角三角板如图1摆放。
(1)将图1中△
绕点C顺时针旋转45°得图2,点
与AB的交点,求证:
;
(2)将图2中△绕点C顺时针旋转30°到△
(如图3),点
与AB的交点。线段
之间存在一个确定的等量关系,请你写出这个关系式并说明理由;
(3)将图3中线段
绕点C顺时针旋转60°到
(如图4),连结
,
求证:⊥AB.
解:(1)证明:过点
作CA的垂线,垂足为D 易知:△CD
为等腰直角三角形,△
DA是直角三角形,且∠A=30°,
所以 故
(2)解: 过点作C
的垂线,垂足为E 易知:△
E
为等腰直角三角形(其中∠2=∠A+∠
CA=45°) △
CE是直角三角形,且∠1=30°,所以
故
(3)证明:将图3中线段绕点C顺时针旋转60°到
,易证:
△≌△
,于是∠
=∠
=45°,故
⊥AB.
9.(2005无锡)已知正方形ABCD的边长AB=k(k是正整数),正△PAE的顶点P在正方形内,顶点E在边AB上,且AE=1. 将△PAE在正方形内按图1中所示的方式,沿着正方形的边AB、BC、CD、DA、AB、……连续地翻转n次,使顶点P第一次回到原来的起始位置.
(1)如果我们把正方形ABCD的边展开在一直线上,那么这一翻转过程可以看作是△PAE在直线上作连续的翻转运动. 图2是k=1时,△PAE沿正方形的边连续翻转过程的展开示意图. 请你探索:若k=1,则△PAE沿正方形的边连续翻转的次数n= 时,顶点P第一次回到原来的起始位置.
![]() |
(2)若k=2,则n= 时,顶点P第一次回到原来的起始位置;若k=3,则
n= 时,顶点P第一次回到原来的起始位置.
(3)请你猜测:使顶点P第一次回到原来的起始位置的n值与k之间的关系(请用含k的代数式表示n).
解:(1)12次
(2)24次;12次
当k是3的倍数时,n=4k;当k不是3的倍数时,n=12k.
10.(2004山东青岛)操作:在△ABC中,AC=BC=2,∠C=900,将一块等腰三角形板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。图①,②,③是旋转三角板得到的图形中的3种情况。研究:
(1) 三角板绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图②加以证明。
(2) 三角板绕点P旋转,是否能居为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由。
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图④加以证明。
解:(1)连结PC,∵△ABC是等腰直角三角形,P是AB的中点,
∴CP=PB,CP⊥AB,∠ACP=
∠ACB=450,∴∠ACP=∠B=450,又∵∠DPC+∠CPE=∠BPE+∠DPC=∠BPE∠CPE∴∠DPC=∠BPE∴△PCD≌△PBE∴PD=PE
(2)共有四种情况,
① 当点C与点E重合,即CE=0时,PE=PB
② CE=2-,此时PB=BE
③ 当CE=1时,此时PE=BE
④ 当E在CB的延长线上,且CE=2+时,此时PB=EB
(3)MD:ME=1:3 过点M作MF⊥BC,垂足分别是F、H ∴MH∥AC,MF∥BC ∴四边形CFMH是平行四边形,∠C=900,∴CFMH是矩形,∴∠FMH=900,MF=CE
练习:1、(2005江苏杨州课改)等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含300角的透明三角板,使300角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE~△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
① 探究1:△BPE与△CFP还相似吗?(只需写出结论)
② 探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
③ 设EF=m,△EPF的面积为S,试用m的代数式表示S.
解:
2、(2005沈阳课改) ⑴如图6,在方格纸中如何通过平移或旋转这两种变换,由图形A得到图形B,再由图形B得到图形C(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度);
⑵如图6,如果点P、P3的坐标分别为(0,0)、(2,1),写出点P2的坐标;
⑶图7是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O顺时针依次旋转90°、180°、270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!
注:方格纸中的小正方形的边长为1个单位长度.
解:略