当前位置:首页 -高中数学试卷 - 高考数学试题 - 正文*

08年高考文科数学模拟考试题卷

2014-5-11 0:12:54下载本试卷

08年高考文科数学模拟考试题卷

第Ⅰ卷(选择题  50分)

一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。)

1已知集合P={ 0, m},Q={x│},若P∩Q≠,则m等于( )

A.1     B.2      C.1      D. 1或2

2.将函数的图象按向量

平移后所得图象的解析式是( 

    A               B

C          D

3.数列{an}n项和Sn = 3nt,则t = 1是数列{an}为等比数列的(  )

    A.充分不必要                     B.必要不充分     

C.充要条件                         D.既不充分又不必要

4. 函数的反函数是(  

A   B   

C D

 5.某球与一个120°的二面角的两个面相切于AB,且AB间的球面距离为,则此球体的表面积为(               

A   B      C        D

6下表是某班学生在一次数学考试中数学成绩的分布表

分数

人数

2

5

6

8

12

6

4

2

  那么分数在[100,110]中和分数不满110分的频率和累积频率分别是( ).

  A.0.18,0.47     B.0.47,0.18    C.0.18,1 D.0.38,1

     

7设f(x)= x2+ax+b,且1≤f(-1)≤2,2≤f(1)≤4,则点(a,b)在aOb平面上的区域面积是 (  )                                 

A         B.1        C.2        D.

8已知P是以F1、F2为焦点的椭圆上一点,若=0, =2,则椭圆的离心率为( )     

A         B      C            D

 9.设上的投影为轴上的投影为2,且,则为( 

A      B    C     D

10. 过抛物线y2 = 2ρx (ρ>0 )上一定点M ( x0,y0 ) ( y0≠0 ),作两条直线分别交抛物线于A ( x1 , y1 ) , B ( x2 , y2 ),当MAMB的斜率存在且倾斜角互补时,则= (  

    A.4                 B.– 4          C.2         D.–2  

第Ⅱ卷(非选择题 100分)

二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.)

11设常数展开式中的系数为= ______

12由直线上的一点向圆引切线,则切线长的最小值为______

134个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其它盒子中球的颜色齐全的不同放法共有种.(用数字作答)

14某篮球运动员在罚球线投中球的概率为,在某次比赛中罚3球恰好命中2球的概率为

__________________

15给出下列四个命题:

①过平面外一点,作与该平面成θ角的直线一定有无穷多条;

②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;

③对确定的两条异面直线,过空间任意一点有且只有唯一的一个平面与这两条异面直线都平行;

④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等;

其中正确的命题序号为     (请把所有正确命题的序号都填上).

三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)

16.(本小题满分12)

的三内角,且其对边分别为,若,且

(1)求角

(2,三角形面积,求的值

17(本小题满分12分)

已知数列 {2 nan} 的前 n 项和 Sn = 96n.

(I)  求数列 {an} 的通项公式;

(II)  bn = n·(2log 2 ),求数列 { } 的前 n 项和Tn.

18.(本小题满分12分) 已知斜三棱柱ABC—A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点在底面上的射影落在上.

(Ⅰ)求证:AC平面BB1C1C;

(Ⅱ)当α为何值时,AB1BC1,且使D恰为BC中点?

(Ⅲ)若α = arccos ,且AC=BC=AA1时,求二面角C1—AB—C的大小.

19.(本小题满分12分)

随着我国加入WTO,某企业决定从甲、乙两种产品中选择一种投资生产,打入国际市场,已知投资生产这两种产品的有关数据如下表:(单位:万美元)

年固定成本

每件产品成本

每件产品销售价

最多可生产件数

甲产品

20

a

10

200

乙产品

40

8

18

120

其中年固定成本与年生产的件数无关,a 为常数,且 3a8.另外,年销售 x件乙产品时需上交 0.05x 2万美元的特别关税.

(I)  写出该厂分别投资生产甲、乙两产品的年利润 y1y2 与生产相应产品的件数 x(xN)之间的函数关系;

(II) 分别求出投资生产这两种产品的最大年利润;

(III)    如何决定投资可获最大年利润.

20.(本小题满分13分)

,其导函数的图像经过点,且时取得最小值-8

(1)求的解析式;

(2)若对都有恒成立,求实数的取值范围.

21.(本小题共14分)已知是双曲线上两点,为原点,直线的斜率之积

Ⅰ)设,证明当运动时,点恒在另一双曲线上;

(Ⅱ)设,是否存在不同时为零的实数,使得点在题设双曲线的渐近线上,证明你的结论.

08年高考文科数学模拟考试题卷

参考答案

一、选择题:(本大题共10个小题;每小题5分,共50分。)

题 号

1

2

3

4

5

6

7

8

9

10

答 案

D

A

C

A

C

A

B

D

B

D

二、填空题:(本大题共5小题,每小题5分,共25分。)

11  12 13720;   14  ;  15、②④

三、解答题:(本大题共6小题,共75分。)

16、(本小题满分12分)

解:1,且

   …………………………………………2

 ……………………………5

4                         ……………………………7

由余弦定理得……………………………10

  ………………………………12

17、(本小题满分12分)

解:(I) n = 1 时,2·a1 = S1 = 3,a1 = ;   …………2

n2 2 n·an = SnSn1 = 6 an = .     …………4   

  通项公式an =       …………6

(II) n = 1 时,b1 = 2log 2  = 3 T1 =  = …………8

 n2时, bn = n·(2log 2) = n·(n + 1)  =  …………10

  Tn =  +  + +  =  +  +  + +  =

  Tn =         …………12

18、(本小题满分12分)

解:  B1D平面ABC, AC平面ABC,

∴ B1DAC, 又ACBC, BC∩B1D=D.

    ∴ AC平面BB1C1C.          …………………… 3分

 () AC平面BB1C1C ,要使AB1BC1 ,由三垂线定理可知,

只须B1CBC1,             ………………………… 5 分

     ∴ 平行四边形BB1C1C为菱形, 此时,BC=BB1

     B1DBC, 要使D为BC中点,只须B1C= B1B,即BB1C为正三角形,  ∴ ∠B1BC= 60°.          ………………………… 7分

  B1D平面ABC,且D落在BC上,

    ∴ ∠B1BC即为侧棱与底面所成的角.

故当α=60°时,AB1BC1,且使D为BC中点…………………… 8分

)过C1作C1E⊥BC于E,则C1E⊥平面ABC.

过E作EF⊥AB于F,C1F,由三垂线定理,得C1F⊥AB.

∴∠C1FE是所求二面角C1—AB—C的平面角.………………… 10分

设AC=BC=AA1=a,

在Rt△CC1E中,由∠C1BE=α=,C1E=a.

在Rt△BEF中,∠EBF=45°,EF=BE=a.

∴∠C1FE=45°,故所求的二面角C1—AB—C为45°.………… 12分

解法二:(1)同解法一             ……………… 3分

)要使AB1⊥BC1,D是BC的中点,即=0,=,

=0,∴

,故△BB1C为正三角形,∠B1BC=60°;

 B1D平面ABC,且D落在BC上,     …………………… 7分

    ∴ ∠B1BC即为侧棱与底面所成的角.

   故当α=60°时,AB1BC1,且D为BC中点.    …………………8分

)以C为原点,CA为x轴,CB为y轴,经过C点且垂直于平面ABC的直线为z轴建立空间直角坐标系,则A(a,0,0),B(0,a,0),C(0,-a),

平面ABC的法向量n1=(0,0,1),设平面ABC1的法向量n2=(x,y,z).

n2=0,及n2=0,得

  ∴n2=(,1).………………10分

cos<n1, n2>=

故n1 , n2所成的角为45°,即所求的二面角为45°.……………………12分

19、(本小题满分12分)

解:(I)由年销售量为 x件,按利润的计算公式,有生产甲、乙两产品的年利润 y1 y2分别为:

 y1 = 10×x(20 + ax) = (10a)x20 0x200 xN…………1

 y2 = 18×x(40 + 8x) 0.05x 2 = 0.05x 2 + 10x40,…………2

  y2 = 0.05 (x100) 2 + 4600x120xN…………3

(II)  3a8 10a > 0 y1 = (10a)x20为增函数

0x200xN

  x = 200时,生产甲产品的最大年利润为 (10a)×20020 = 1980200a(万美元)。…………5

  y2 = 0.05 (x100) 2 + 460,且 0x120xN

  x = 100时,生产乙产品的最大年利润为 460(万美元)。…………7

(III)    问题即研究生产哪种产品年利润最大,

 (y1)max(y2)max = (1980200a) 460 = 1520200a …………10

所以:当 3a < 7.6时,投资生产甲产品 200件可获最大年利润。

    a = 7.6时,生产甲产品与生产乙产品均可获得最大年利润;

    7.6 < a8时,投资生产乙产品 100件可获最大年利润。……12

 20、(本小题满分13分)

解:(1,且的图像经过点,

            ……2                             ……3

,解得…5                    ……6

2)要使都有恒成立,只需即可.                  …………………………7

…………………………8

函数上单调递减,在上单调递增,在上单调递减,…………………………10

   

故所求的实数的取值范围为     …………………………13

  21. (本小题满分14分)

解:(Ⅰ)设,由  ,得

在双曲线上,有

       

       ②…………………………………………2分

,即

,    ③………………………………………4分

①+2×③+②,并整理,得

这表明点恒在双曲线上.……………………………6分

)同(Ⅰ)所设,由,得

当点在双曲线的渐近线上,有

,亦即

…………………10

将①②③三式代入上式,得,从而

因此,不存在不同时为零的实数,使得点在题设双曲线的渐近上.…14分