当前位置:首页 -高中数学试卷 - 高考数学试题 - 正文*

08届高考数学命题走势函数练习

2014-5-11 0:12:58下载本试卷

08届高考数学命题走势函数练习(二)

函数是高考数学中极为重要的内容,函数的观点和方法既贯穿了高中代数的全过程,又是学习高等数学的基础.纵观近几年来的高考试题,函数在选择、填空、解答三种题型中每年都有试题,约含全卷的30%左右.近几年的考点主要体现在以下几个方面:

一、        纯粹函数内容(即单调性、奇偶性、定义域、值域、反函数)及映射概念的考查常以选择题、填空题出现,其能力要求比较低.

【例1】 (07年广东)已知函数的定义域为Mg(x)=的定义域为N,则MN=

  (A) (B) (C)  (D)

【解析】 M={xx<1},N={xx>-1},MN={x-1<x<1}.答案为C.

【说明】 考查了函数的定义域.

【例2】 (07年全国)设,函数在区间上的最大值与最小值之差为,则(  )

A.     B.      C.       D.

【解析】 .答案为D.

【说明】 对数函数的最值问题.

【例3】(07年安徽)下列函数中,反函数是其自身的函数为   (  )

(A)         (B)

(C)        (D)

【解析】在下列函数中,反函数是其自身的函数为,选D.

说明】 考查了反函数的求法.

4】 (07年安徽)定义在R上的函数既是奇函数,又是周期函数,是它的一个正周期.若将方程在闭区间上的根的个数记为,则可能为

 (A)0              (B)1                (C)3            (D)5

【解析】

,则可能为5,选D。

说明】 此题有函数的奇偶性,周期性,还和方程的根联系在一起.有一定的综合性.

5】(07年北京)对于函数①f(x)=lg(x-2+1),②f(x)=(x-2)2,③f(x)=cos(x+2),判断如下三个命题的真假:

命题甲:f(x+2)是偶函数;

命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;

命题丙:f(x+2)-f(x)在(-∞,+∞)上是增函数.

能使命题甲、乙、丙均为真的所有函数的序号是

A.①③           B.①②

C.③             D.②

解析】 ①不满足丙,排除A、B.③不满足甲,C排除.

答案为D.

说明】 三个函数综合在一块考查了它们性质,可谓是题小量不小啊.

二、函数的性质及图象变换多以选择题形式出现,并且低难度和高难度的试题都有可能出现.

6】(07年广东)客车从甲地以60km/h的速度行驶1小时到达乙地,在乙地停留了半小时,然后以80 km/h的速度行驶1小时到达丙地,下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间t之间的关系图象中,正确的是      (  )


解析】 客车共走140 km,用时2.5 h,因此排除A、D,而B中在乙地休息时没有显示出来.答案为C.

说明】 此题以图象说明路程—时间的关系,只要图看仔细了,应该不会出错.属于低难度题.

7】(07年湖北)为了预防流感,某学校对教室用药熏消毒法进行

消毒. 已知药物释放过程中,室内每立方米空气中的含药

y(毫克)与时间t(小时)成正比;药物释放完毕后,

yt的函数关系式为a为常数),

如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开始,每立方米空气中的含

药量y(毫克)与时间t(小时)之间的函数关系式

        .

(Ⅱ)据测定,当空气中每立方米的含药量降低

到0.25毫克以下时,学生方可进教室,那从药物释放

开始,至少需要经过   小时后,学生才能回到教室.

【分析】(Ⅰ)两曲线交于点(0.1,1),故t∈(0,0.1]时,y=10tt∈[0.1,+∞)时,将(0.1,1)代入,得故所求函数关系为:

(Ⅱ)由(Ⅰ)知:当t∈[0.1,+∞)时,yt的减函数.

.即小时,也就是36分钟后,学生才能回到教室.

说明】 此题考查了数学建模在实际问题上的应用.有一定的区分度.

三、       函数的解答题,综合性较强,难度较大,要进行周密地分析、准确地计算来解决.

8】 (07年北京) 如图,有一块半椭圆形钢板,其半轴长

,短半轴长为,计划将此钢板切割成等腰梯形的形状,下

是半椭圆的短轴,上底的端点在椭圆上,记,梯形面积为

(I)求面积为自变量的函数式,并写出其定义域;

(II)求面积的最大值.

解答】(I)依题意,以的中点为原点建立直角坐标系(如图),则点的横坐标为.点的纵坐标满足方程

解得,

所以,

    ,定义域为

(II)记

则,

,得

因为当时,;当时,

所以 的最大值.

因此,当时,也取得最大值,最大值为

即梯形面积的最大值为

说明】 该题以椭圆为载体,以函数思想为灵魂,以不等式、导数、三角函数等为工具,非常自然地将解析几何与导数、函数、方程、不等式、三角函数等重要数学基础知识有机交汇融为一体,无矫揉造作之嫌,是近年来较为成功的试题之一.

9】 (07年上海) 已知函数,常数

  (1)讨论函数的奇偶性,并说明理由;

  (2)若函数上为增函数,求的取值范围.

解答】 (1)当时,

对任意

 为偶函数. 

  当时,

  取,得 , 

  

   函数既不是奇函数,也不是偶函数. 

  (2)解法一:设

  , 

  要使函数上为增函数,必须恒成立.

  ,即恒成立. 

  又

  的取值范围是

  解法二:当时,,显然在为增函数. 

时,反比例函数为增函数,

为增函数. 

时,同解法一.

说明】 本题考查了函数的性质问题,尤其是单调性的定义法证明更要引起注意.