高一数学竞赛试题(新课程)
班别 姓名 分数
(时间:100分钟, 满分150分)
一、选择题(共6小题,每小题6分,共48分)
1、集合{0,1,2,2006}的非空真子集的个数是 ( )
(A)16 (B)15 (C)14 (D)13
2、设U=Z,M=,N=
,P=
,则下列结论不正确的是 ( )
(A) (B)
(C)
(D)
3、根据图中骰子的三种不同状态显示的数字,推出?处的数字是( )
(A)1 (B)2 (C)3 (D)6
5
1
?
4 1 2 3 4 5
4、函数的图象是 ( )
5、函数上的最大值和最小值之差为
,
则的值为 (
)
(A )2或 (B)2或4 (C)
或4 (D)2
6、有A、B、C、D、E共5位同学一起比赛象棋,每两人之间只比赛1盘,比赛过程中统计比赛的盘数知:A赛了4盘,B赛了3盘,C赛了2盘,D赛了1盘,则同学E赛了()盘
(A)1 (B)2 (C)3 (D)4
7若的解是
,则a和c的值是( )
(A)a=6,c=1 (B)a=6,c=-1 (C)a=--6,c=1 (D)a=-6,c=--1
8、若x= ,
则xy的值为( )
(A) 12 (B)13 (C)14 (D)15
二、填空题(共6小题,每小题7分,共42分)
1、已知函数,奇函数
在
处有定义,且
时,
,则方程
的解是
。
2、、吴川市的出租车按如下方法收费:起步价5元,可行3 km (不含3km);超过3 km按
1.2元/km计价(不足1 km按1 km计算)。有一天,老李从吴川坐出租车到谭巴
(路程20 km多一点)。他得付车费 元(精确到1元)。
3、用火柴棒按下图的方法搭三角形:
按图示的规律搭下去,则第2006个图形所用火柴棒的支数为 支。
4、巳知f(x+y)=f(x) ﹒f(y),f(1)=2,则____________.
5、设集合,
,且
,则实数
的取值范围是
。
6、设集合A={-1,1},B={x-2ax+b=0},若B≠¢ 且B
A,则a 、b的值为__________
三、解答题(共3小题,每小题20分,共60分)
13、甲、乙两人到物价商店购买商品,商品里每件商品的单价只有8元和9元两种.已知两人购买商品的件数相同,且两人购买商品一共花费了172元,求两人共购买了两种商品各几件?
14已知二次函数y=+2(a-2)x+4,如果对x [-3,1],y>0成立,求a的取值范围。
15、设k为正整数,使得也是一个正整数,求k的值。
〔解〕:
参考答案
一、1C 2B 3D 4C 5A 6B 7D 8C
二、1、, 2、27, 3、4013 4 、3994, 5、
6、
或
或
三、13解:设每人购买了件商品,两人共购买了单价为8元的
件,单价为9元的有
件.则
解之,得
因为,所以
.
所以整数.
故
14、解:(1)当-32-a
1 即1
a
5 时 ,(2-a)
+2(a-2)(2-a)+4>0, 得
<0.所以0<a<4,结合1
a
5得1
a<4.
(2)当2-a<-3即 a>5时,x=-3时,y的值最小。
所以(-3)+2(a-2)(-3)+4>0,
得a<
,结合a>5知a无解
(3)当2-a>1即a<1时,当x=1时,y的值最小,所以+2(a-2)×1+4>0,得a>-
,结合a<1得-
<a<1。取(1)(2)(3)中a的取值集合的并集,得a的取值范围是{a-
<a<4}。
15、解:令,得
,
令
得
与
均为偶数.
(1) 若均为偶数,令
,则
得
,
,
或
或
或
由,得m=251002或m=83670或m=27898或m=1670.
这时,k=252004或84672或28900或2672。
(2) 若均为奇数,令
则
为奇数,得
与
均为奇数,矛盾!
这时无解.
综上所述,k的值为252004或84672或28900或2672。