当前位置:首页 -高中数学试卷 - 高中一年级数学试题 - 正文*

高一数学期末综合测试(3)

2014-5-11 0:18:26下载本试卷

高一数学期末综合测试(3)

一、选择题

1、在等边△ABC中,+=  A、  B、 C、 D、以上均不对  [  ]

2、下列函数中,以为π最小正周期的偶函数,且在(0,)内递增的是       [  ]

  A、y=sinx    B、y=sinx   C、y=cosx   D、y=cosx

3、已知cos(α- )=,则sin2α的值为  A、  B、-  C、 D、-  [  ]

4、若=(1,1)=(1,-1)=(-1,2),则=   +           [  ]

  A、    B、   C、    D、

5、为非零向量,且=,若k+与k-相互垂直,则实数k的可能值为 [  ]

  A、1       B、2      C、0      D、任意实数

6、△ABC中,若C=900,则sin2A=    A、 B、 C、 D、    [  ]

7、△ABC中,若b=2a sinB,则A=  0A、30 B、60 C、30或150 D、60或120 [  ]

8、若·=·,且则                     [  ]

  A、= B、(λ∈R) C、 D、方向上的投影相等

9、=(cosα,sinα)=(cosβ,sinβ)则有                [  ]

  A、 B、 C、(+)⊥(-) D、的夹角为α-β

10、△ABC中,==,则·<0 是△ABC为钝角三角形的   [  ]

  A、充分不必要条件  B、必要不充分条件 C、充要条件 D、非充分非必要条件

二、填空题

11、函数的定义域为      12.     

13、已知·=2,=2,=,则的夹角      

14、若P在直线P1P2上,且P1P2=2PP1,则点P分所成的比λ=   

三、解答题

15、已知+=(2,- 8),-=(-8,16),求的夹角

16、△ABC中,若sinB=sinAcosC,且△ABC最大边长为12,最小角的正弦为

  (1)判断△ABC的形状  (2)求△ABC的面积

17、△ABC中,已知==,求证:S△ABC=

18、已知y=sinx+sin2x-cosx(0≤x≤π)(1)求sinx-cosx的取值范围 (2)求这个函数值域

19、在四边形ABCD中,CD=,∠ACD=300,∠ADC=1200,∠BDC=450,∠BCD=750

  求AB的长.