向量的加法与减法练习
基础卷(15分钟)
一、选择题
1.下列命题:
(1)如果非零向量与
的方向相同或相反,那么,
的方向必与
,
之一的方向相同。
(2)△ABC中,必有
(3)若,则A,B,C为一个三角形的三个顶点。
(4)若,
均为非零向量,则
与
一定相等。
其中真命题的个数为( )
A.0 B.1
C.2 D.3
2.给出下列3个向量等式:
(1)(2)
(3)
。其中正确的个数是( )
A.0 B.1
C.2 D.3
3.在△ABC中,设( )
A.
B.
C.
D.
4.已知ABCD是平行四边形,O为平面上任一点。设,则( )
A.
B.
C.
D.
二、填空题
5.。
6.(1);
(2)。
提高卷(30分钟)
一、选择题
1.有下列3个不等式
(1)(2)
(3)
其中正确的个数是( )
A.0 B.1
C.2 D.3
2.化简以下各式:
(1);(2)
;(3)
;(4)
。结果为零的向量的个数是( )
A.1 B.2
C.3 D.4
3.已知,
,则
的取值范围是( )
A.[3,17]
B.(3,17)
C.[3,10]
D.(3,10)
4.下列命题中,正确的是( )
A.单位向量都共线
B.
C.若,则
D.且
5.已知一点O到平行四边形ABCD的3个顶点A,B,C的向量分别为,
,
,则向量
等于( )
A.
B.
C.
D.
6.在平行四边形ABCD中,若,则必有( )
A.
B.或
C.ABCD是矩形
D.ABCD是正方形
7.若O是△ABC内一点,,则O是△ABC的( )
A.内心
B.外心
C.重心
D.垂心
二、填空题
8.△ABC中,,则
。
9.向量,
满足
,
,则
的最大值为:______,
的最小值为:_____。
10.如图5—4,用两根绳子把重10kg的物体W吊在水平杆子AB上,∠ACW=150°,∠BCW=120°,则A和B处所受力的大小(绳子的重量忽略不计)分别是_______。
三、解答题
11.一辆汽车向东行驶30km,然后改变方向向北行驶30km,求汽车行驶的路程及两次位移的和。
12.设表示,“向北走20km,”
表示“向南走10km”,
表示“向东走20km”,
表示“向西走10km”,说明下列向量的意义:
(1);(2)
;(3)
;(4)
13.某人从A点出发向东走100m,到达B点, 然后改变方向向西北走200m,到C点,最后向西走100m到达D点,求的值。
参考答案
基础卷
一、
1.B2.B3.B4.B
二、
5.,
6.,
[解题点拨]
1.命题
(1)中可能的零向量,其方向是任意的;
(3)中:A、B、C可能共线;
(4)中:只有与
同向时,才有
=
,否则有
<
4.由
6.
(1)向量的加法满足交换律,故原式可化为
(2)
解法1(将向量减法转化为加法进行化简)原式=
解法2(利用进行化简)原式
=
解法3:原式=
(本解法是利用D进行化简的,其中O为平面内任意一点)
提高卷
一、
1.D2.C3.A4.B5.B6.C7.C
二、
8.
9.10,2;
10.,5kg。
三、
11.汽车行驶的路程为60km,两次位移和的大小为,方向是东偏北45°
12.(1)表示向北走40km;(2)表示向北走20 km;再向南走10km,(3)向北走20km再向西走10km,再向北走20km;(4)向南走10km,向东走20km;再向西走10km。
13.200m
[解题点拨]
2.(3)中
3.而
(当
反向时取等号)
(
同向时取等号)即
6.分别代表
ABCD的一条对角线。
7.设M为AB边的中点,利用关系进行判断。
10.此题涉及物理学中力的合成与分解,由两根绳子拉力的合力大小等于物体重力的大小,利用向量加法的平行四边形法则予以解决。
13.ABCD构成一平行四边行,故。