高中代数上册复习训练题
一. 选择题
1. 设集合
,从M到P的映射
满足
,那么不同映射
的个数是( )
A. 7 B. 6 C. 4 D. 2
2. 下列判断中正确的是( )
A.
是偶函数
B.
是奇函数
C.
既是奇函数又是偶函数
D.
是非奇非偶函数
3. 函数
与函数
的图象( )
A. 关于直线
对称 B. 关于直线
对称
C. 关于直线
对称 D. 关于直线
对称
4. 函数
的图象与
轴围成的封闭图形的面积是( )
A. 2 B.
C.
1 D. ![]()
5.
是“函数
在
上恒有
”的( )
A. 充分非必要条件 B. 必要非充分条件
C. 充分必要条件 D. 非必要非充分条件
6. 在区间(
)上是增函数的是( )
A.
B. ![]()
C.
D. ![]()
7. 给出如下的四个函数方程和四个函数图象:
(1)![]()
(2)![]()
(3)![]()
(4)![]()

它们之间对应关系都正确的一组是( )
A. 甲—(3),乙—(1),丙—(2),丁—(4)
B. 甲—(1),乙—(2),丙—(3),丁—(4)
C. 甲—(2),乙—(4),丙—(1),丁—(3)
D. 甲—(2),乙—(3),丙—(4),丁—(1)
8. 已知
是偶函数,且当
时,
为减函数,又记
,则有( )
A.
B.
C.
D. ![]()
9. 将进货单价为40元的商品按50元一个销售时,能售出500个;如果这种商品每个提价1元,销售量就减少10个,为了获得最大利润,每个售价应定为( )
A. 45元 B. 50元 C. 60元 D. 70元
10. 角
终边上有一点
,那么角
等于(以下
)( )
A.
B.
C.
D. ![]()
11. 如果函数
的一段图象如图1,那么函数表达式是( )
A.
B. ![]()
C.
D. ![]()

12. 要得到函数
的图象,只要将函数
的图象( )
A. 向右平移
个单位 B. 向左平移
个单位
C. 向右平移
个单位 D. 向左平移
个单位
13. 下列命题中,正确的是( )
A. 若
,则![]()
B. 函数
的最小正周期是![]()
C. 在
中,若
,那么
是等腰直角三角形
D. 将函数
的图象上点的横坐标变为原来的
倍,然后向左平移
,可得到函数
的图象
14. 函数
的最小正周期是2,且图象关于直线
对称,那么
的一个值可以是( )
A.
B.
C.
D. ![]()
15. 设函数
的最大值为
,最小值为
,那么
的值为( )
A.
B.
C.
0 D. ![]()
二. 填空题
16. 已知
,则实数
的取值范围是__________。
17. 如果
是奇函数,那么
__________
18. 设函数
的定义域是R,且满足条件,
,那么
__________。
19. 在如图2的直角梯形ABCD中,
,下底AB=6,上底CD=4,高AD=2,那么它的内接矩形AEFG的最大面积是__________。

20. 在
中,给出下列命题:
(1)
是锐角三角形![]()
(2)![]()
(3)![]()
(4)![]()
其中正确命题的序号是__________。
三. 解答题:
21. 设
,若当
时,
有意义,求实数
的取值范围。
22. 已知
,且
,求
的值。
23. 已知
,
。
(1)求
的表达式;
(2)判断函数
的奇偶性和单调性;
(3)若当
时,有
成立,求实数
的取值范围。
24. 设
。
(1)求
的定义域和值域;
(2)求
的反函数
;
(3)实数
取何值时,关于
的方程
在区间
上有相异的实根,并求此时两根之和。
25. 设函数
,又函数
的图象与
的图象关于直线
对称。
(1)求函数
的解析式;
(2)设
和
是
的定义域内任意两个值,且
,求证
;
(3)设A、B是
图象上的任意不同的两点,证明直线AB必与直线
相交。
26. 设
的最大值是3,求
的值。
27. 在
中,记条件
,条件
。判断条件
是条件
的充分条件,还是必要条件,并证明你的结论。
28. 已知二次函数
(
为常数,且
)满足条件:
,且方程
有等根。
(1)求
的解析式;
(2)是否存在实数
,使
的定义域为
,值域为
?如果存在,求出
的值;如果不存在,说明理由。
参考答案
一. ABCDB DDADD CADAA
二. 16.
17. 0 18. 1
19. 8 20. (1)(2)(3)
三. 21. 应有
,即知
对
恒成立。而右端的函数是增函数,当
时,它取得最大值是
,从而
的取值范围是
。
22. 原式![]()
![]()
将已知式平方,求得
。
又由
,知
![]()
而
,
则
,
从而原式
23. (1)设
,得
,代入题设,从而可求得
。
(2)计算得
,故
是奇函数。
当
时,
是增函数,又
,从而
是增函数,当
时,
是减函数,又
,从而
也是增函数。
综上,当
时,
总是增函数。
(3)由题设及
是奇函数、增函数,有

求出![]()
24. (1)定义域是
,值域是
。
(2)![]()
(3)方程即![]()
设
,由
,有
,即
在
内有相异两实根,记
,则

解得![]()
又
,则
,
从而
。
25. (1)知
互为反函数,可求得
。
(2)设
,则

(3)设
和
是
图象上不同的两点,由(2)知
![]()
可见
,而直线
的斜率为1,故直线AB必与直线
相交。
26.
。
(1)若
,
则当
时,
有最大值。
由最大值![]()
求得![]()
(2)若
,则当
时,
有最大值。
由最大值![]()
求得![]()
综上可知![]()
27. 由条件![]()

![]()
![]()
![]()
若
,则
![]()
可见总能推得
,即
。
反之,设
成立,即有
,来推得
,则只要证明
,可先证
(*)
只要证![]()

由条件
,知上式成立,故(*)成立,即有
,而由
,知
,即
,因此必有
,即
,可见
。
综上可知,
的充要条件。
28. (1)依题意,
有等根,故
,得
。
由
,得
恒成立,即
恒成立。故有
且
,得
。
所以![]()
(2)假设存在满足条件的
,因为
,
所以
。
而抛物线的对称轴是
,故
时,
在
上为增函数,则有

求得![]()
又
,故![]()
所以存在实数
,使
的定义域为
,值域为
。