高一文科数学第一学期期末统一考试
数学文科试卷
本试卷分第I卷(选择题)、第II卷(非选择题)两部分。共100分,考试时间100分钟。
第I卷(选择题共40分)
注意事项:
1、答第I卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
3、不可以使用计算器。
4、考试结束,将答题卡交回,试卷不用上交。
一、选择题(每小题4分,共40分)
1. 若
为△ABC的内角,则下列函数中一定取正值的是( )
A.
B.
C.
D.
![]()
2. 当
时,“
”是“
”( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件
3.
与
,两数的等比中项是( )
A.
B.
C.
D.
4. 不等式
的解集是
,则
的值是( )
A. 10 B. -10 C. 14 D. -14
5. 在△ABC中,
,则
等于( )
A.
B.
C.
D.
6. 与椭圆
有相同两焦点且过点
的双曲线方程是( )
A.
B.
C.
D.
7. 若曲线
的一条切线
与直线
垂直,则
的方程为 ( )
A.
B.
C.
D. ![]()
8. 不等式组
表示的区域是( )
9.若抛物线
的焦点与椭圆
的右焦点重合,则
的值为 ( )
A. 2 B.-2 C. 4 D. - 4
10. 在等差数列
中,
是方程
的两个根,则
是( )
A. 15 B. 30 C.
50 D. ![]()
|
数学文科试卷
第II卷(非选择题共60分)
| 题 号 | 二 | 15 | 16 | 17 | 18 | 19 | 总分 | 总分人 | 复分人 |
二、填空题(每小题4分,共16分)
11命题p:
的否定是
12.若点(
)在第一象限,且在直线
上移动,则
的最大值为
13. 两个等差数列![]()
则
=
.
14设
,则
的最大值为
三、解答题(共5小题. 15、16、17、18题各9分,19题8分,合计44分)
|
15. 在ΔABC中,角A、B、C所对的边是
、
、
,
且
.
(1)求
的值(4分)
(2)若
=2,求ΔABC面积的最大值(5分)
|
16.已知函数
.
⑴当
时,求函数的单调区间(5分)
⑵函数
在
处有极大值,求
的值(4分)
|
两点B,C,经过抛物线上一点P垂直于轴的直线和轴交于点Q,
求证:PQ是BC和OQ的比例中项.

18.建造一个长方体形无盖水池,其容积为4800m3,深为3m.如果池底每平方米的造价150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?
19. 设
为等比数列,
,
.
(1)求最小的自然数
,使
;
(2)求和:
.
高一文科数学第一学期期末统一考试
数学科试卷参考答案
一、选择题:AACDC BDBCA
二、填空题:11:
;12:
; 13:
;14:
三、解答题:
15.解:(1)∵
,∴![]()
∴![]()
∵
是ΔABC的内角,则![]()
∴
;
(2)若
=2,ΔABC面积![]()
又![]()
∴
,∴![]()
∴![]()
当
时,ΔABC面积
为最大值.
16.解:⑴当
时,
;
,令
;得 ![]()
|
|
|
|
| 1 |
|
|
| + | 0 | - | 0 | + |
|
| ↗ | 极大值 | ↘ | 极小值 | ↗ |
列表:
∴函数
的单调增区间分别为
,
;
函数
的单调减区间为
.
⑵∵
;
∴![]()
∵函数
在
处有极大值,
∴
,即
;
∴![]()
17.证明:如图,设抛物线方程:
,焦点为
,
直线BC的方程为
;解方程组
,得
,
∴B
,C
,BC=
;
令P
,由
,其中
OQ=
,PQ=![]()
∵PQ2=
2;BC
OQ=![]()
∴PQ2=BC
OQ;
∴PQ是BC和OQ的比例中项.
18.解:设底面的长为
米,宽为
米,水池总造价为
元,根据题意,有

由容积为4800 ,可得 ![]()
因此 ![]()
由基本不等式与不等式的性质,可得
![]()
![]()
即 ![]()
当
时, 等号成立。
所以,将水池的地面设计成边长为40m的正方形时总造价最低,最低总造价是297600元.
19.解:(1)由已知条件得
,
因为
,所以,使
成立的最小自然数
.
(2)因为
,…………①
,…………②
得:![]()

![]()
所以
.