当前位置:首页 -高中数学试卷 - 高中二年级数学试题 - 正文*

高二必修5《数列》单元测试卷

2014-5-11 0:18:48下载本试卷

高二必修5《数列》单元测试卷

一、选择题(每小题3分,共33分)

1、数列的一个通项公式是             

  A.        B.

  C.   D.

2、已知数列{an}的通项公式,则a4等于(   ).

  A 1     B 2     C 3    D 0

3、在等比数列中,(  )

  A       B        C         D

4、已知等差数列的公差为2,若成等比数列,则等于(   )

A     B      C      D 

5、等比数列{an}的前3项的和等于首项的3倍,则该等比数列的公比为 (  )

A.-2     B.1      C.-2或1   D.2或-1

6、等差数列中,已知前15项的和,则等于(  ).

  A.     B.12      C.     D.6

7、已知等比数列{an} 的前n项和为Sn , 若S4=1,S8=4,则a13+a14+a15+a16=(  ).

  A.7       B.16      C.27      D.64

8、一个三角形的三个内角A、B、C成等差数列,那么的值是

A.       B.      C.      D.不确定

9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为

A.6       B.       C.10        D.12

10、 在等比数列{an}中,=1,=3,则的值是 

  A.14      B.16      C.18      D.20

11、计算机的成本不断降低,若每隔3年计算机价格降低,现在价格为8100元的计算机,9年后的价格可降为(       )

A.2400元    B.900元   C.300元     D.3600元

二、填空题(每小题4分,共20分)

12、已知等比数列{}中,=2,=54,则该等比数列的通项公式=       

13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于       

14、数列的前n项和是    

15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:

则第n个图案中有白色地面砖­­­_________________块.

 

 

 


16、在数列中,,且对于任意自然数n,都有,则   

三、解答题

17、(本小题满分8分)

等差数列中,已知,试求n的值

18、(本小题满分8分)

  在等比数列中,,公比,前项和,求首项和项数

19、(本小题满分10分)

已知:等差数列{}中,=14,前10项和

(1)求

(2)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和

20、(本小题满分10分)

某城市2001年底人口为500万,人均住房面积为6 m2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m2,才能使2020年底该城市人均住房面积至少为24m2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).

21、(本小题满分11分)

已知等差数列{an}的首项a1=1,公差d>0,且第二项,第五项,第十四项分别是等比数列{bn}的第二项,第三项,第四项.

  (1)求数列{an}与{bn}的通项公式;

  (2)设数列{cn}对任意自然数n,均有

c1+c2+c3+……+c2006值.

 

 

 

 

参考答案

题号

1

2

3

4

5

6

7

8

9

10

11

答案

D

D

A

B

C

D

C

B

A

B

A

12、3.2n-1    13、510  

 14、n(n+1)+1-2n  15、4n+2  16、4951

17、d=,n=50

18、解:由已知,得

       

   由①得,解得 .将代入②得                          ,即  ,解得 n=5.∴ 数列的首项,项数n=5.

 19、解析:(1)、由 ∴     

 (2)、设新数列为{},由已知, 

20.解 设从2002年起,每年平均需新增住房面积为x万m2,则由题设可得下列不等式

解得.

答 设从2002年起,每年平均需新增住房面积为605万m2.

21、解:(1)由题意得(a1+d)(a1+13d)=(a1+4d)2(d>0) 解得d=2,∴an=2n-1,bn=3n-1.

 (2)当n=1时,c1=3 当n≥2时,