当前位置:首页 -高中数学试卷 - 高中二年级数学试题 - 正文*

高二数学会考模拟试题B

2014-5-11 0:18:56下载本试卷

数学会考模拟试题(B)

一选择题

1.已知集合,则等于

A      B    C      D 

2.函数的反函数是

A B C D

3.已知等差数列中,,则的值是

A     1    B   2   C   3    D   4

4.设函数的图象过点(1,2),则反函数的图象过点

A  (1,2)   B(-1,-2)   C(-2,-1) D (2,1)

5.

A充分不必要条件  B必要不充分条件  C充分必要条件 D 既不充分也不必要条件

6.一条直线若同时平行于两个相交平面,则这条直线与这两个相交平面的位置关系是

A  异面    B相交   C平行   D平行或相交

7.点P在直线上,O为原点,则OP的最小值为

A-2     B     C        D  

8.若向量a=1, b=2, c= a+ bca,则向量ab的夹角为

     B     C        D  

9.若抛物线的焦点与椭圆的右焦点重合,则P的值为

A  -2       B 2        C  ﹣4        D 4

10.不等式组表示的平面区域是一个

A  三角形    B  梯形      C 矩形       D 菱形

11.已知正方体的外接球的体积是,那么正方体的棱长等于

A     B        C      D 

12.函数在下列哪个区间是减函数

A     B    C      D

13.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有

A  108种    B  186 种     C  216种      D  270种

14.函数对任意的实数t都有

则A     B 

C      D  

15.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为

A  0      B  -8         C  2      D     10

16.双曲线的渐近线方程

A      B      C       D

17.在下列函数中,函数的图象关于y轴对称的是

A      B       C        D 

18.将的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将图象沿x轴负方向平移个单位,则所得图象的解析式为

A      B    C  D

19.设我方每枚地对空导弹独立地击中敌机的概率为,如果要以99%的把握击中来犯敌机,则至少要同时发射导弹      

A   2枚       B  3 枚       C  4枚       D  5枚

20.建造一个容积为8,深为2的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为

A 1700元        B  1720元       C 1740元    D 1760元

二:填空题

21.函数的值域                   

22.不等式的解集                          

23.抛物线的准线方程是                       

24.在的展开式中,含项的系数为                    

三:解答题

25.在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是正三角形,平面PAD  底面ABCD

(1)    证明AB 平面PAD

(2)    求面PAD与面PDB所成的二面角的正切值

如图ABCD是正方形,面ABCD,PD=DC。

(1)求证:ACPB;

(2)求二面角的大小;

(3)求AD与PB所成角的正切值。

26.设二次方程有两根,且满足

(1)    试用表示

(2)    求证:是等比数列;

(3)    当时,求数列的通项公式。

27.已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量

(1)求椭圆的离心率;

(2)设Q是椭圆上任意一点,分别是左、右焦点,求的取值范围。

会考数学(B)卷答案

答题卡

1

2

3

4

5

6

7

8

9

10

B

A

B

D

B

C

B

C

D

A

11

12

13

14

15

16

17

18

19

20

D

C

B

A

B

C

C

B

B

D

21.    [-2,0]  

22.

23.

24.    20    

25.证明:(1)取AD的中点O,连接PO,侧面PAD是正三角形,POAD,

又面PAD面ABCD则POAB,又底面是正方形,所以PAAB,则AB面PAD

(2)    取PD的中点E连接AE、连接BE由(1)及三垂线定理知为所求的二面角

在直角三角形AEB中,设AB=a,则

26.(1)解:根据韦达定理得

(2)因为所以

所以数列是等比数列

(3)    当的首项为

所以所以:

27.解:

是共线向量,所以所以b=c,

(2)设

所以

当且仅当所以