高二上期末考试模拟试题三
数 学
(测试时间:120分钟 满分150分)
一. 选择题(12×5分=60分,每小题给出的四个选项中,只有一项是符合题目要求的,将正确结论的代号填入后面的表中)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
答案 |
1.抛物线=-2y2的准线方程是( ).
A. B.
C.
D.
2.两直线2x – y + k = 0 与4x – 2y + 1 = 0的位置关系为( ).
A.平行 B.垂直 C.相交但不垂直 D.平行或重合
3.不等式≤0的解集是( ).
A.{x│≤2} B.{x│1<x≤2= C. {x│1≤x≤2} D.{x│1≤x<2=
4.圆的圆心到直线
的距离是( ).
A. B.
C.1 D.
5.已知a、b、c∈R,那么下列命题正确的是( ).
A.a>b Þ ac2>bc2 B.
C. D.
6.若直线l的斜率k满足k≤1,则直线l的倾斜角的取值范围是( ).
A. B.
C. D.
7.若A是定直线l外的一定点,则过A且与l相切圆的圆心轨迹是( ).
A.圆 B.抛物线 C.椭圆 D.双曲线一支
8.曲线y=x3-x2+5在x=1处的切线的倾斜角是( ).
A. B.
C.
D.
9. 已知点P(x,y)在不等式组表示的平面区域上运动,则z=x - y的取值范围是(
).
A.[-2,-1] B.[-2,1] C.[-1,2] D.[1,2]
10.设0<a<,则下列不等式成立的是(
).
A. B.
C. D.
11.若双曲线的焦点在y轴上,则m的取值范围是( ).
A.(-2,2) B.(1,2) C.(-2,-1) D.(-1,2)
12.已知椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现有一水平放置的椭圆形台球盘,其长轴长为2a,焦距为2c,若点A,B是它的焦点,当静放在点A的小球(不计大小),从点A沿直线出发,经椭圆壁反弹后再回到点A时,小球经过的路程是( ).
A.4a B.2(a-b) C.2(a+c) D.不能惟一确定
![]() |
二、填空题:本大题共4个小题,每小题4分,共16分.把答案直接填在题中横线上.
13.
用“<”或“>”填空:如果0<a<b<1,n∈N*,那么______
_______1 .
14. 已知函数则
的值是_________ .
15. 两圆x2+y2=3与的位置关系是_________ .
16. 给出下列四个命题:① 两平行直线和
间的距离是
;② 方程
不可能表示圆;③ 若双曲线
的离心率为e,且
,则k的取值范围是
;④ 曲线
关于原点对称.其中所有正确命题的序号是_____________ .
三、解答题: 本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.
17. (本小题满分12分)
(Ⅰ) 比较下列两组实数的大小:
① -1与2-
; ② 2-
与
-
;
(Ⅱ) 类比以上结论,写出一个更具一般意义的结论,并给以证明.
18. (本小题满分12分)
已知直线l过点M(0,1),且l被两已知直线l1:x-3y+10=0和l2:2x+y-8=0所截得的线段恰好被M所平分,求直线l方程.
19. (本小题满分12分)
已知圆C经过点A(2,-3)和B(-2,-5).
(Ⅰ) 当圆C的面积最小时,求圆C的方程;
(Ⅱ) 若圆C的圆心在直线x-2y-3=0上,求圆C的方程.
20. (本小题满分12分)
已知抛物线的顶点在原点,它的准线经过双曲线的左焦点,且与x轴垂直,此抛物线与双曲线交于点(
),求此抛物线与双曲线的方程.
21. (本小题满分12分)
已知实数a>0,解关于x的不等式>1.
22. (本小题满分14分)
如图,已知△OFQ的面积为S,且·
=1,
(Ⅰ) 若S满足条件<S<2,求向量
与
的夹角θ的取值范围;
(Ⅱ) 设=c(c≥2),S=
c,若以O为中心,F为焦点的椭圆经过点Q,当
取得最小值时,求此椭圆的方程.
数学试题参考答案及评分意见
一、选择题:每小题5分,共60分.
1-5. DDBAC;6-10. BBDCA;11-12. CD.
二、填空题:每小题4分,共16分.
13.
>,>;14. 理科:,文科:11;15.
理科:相离,文科:2;16.
①,④.
三、解答题:每小题5分,共60分.
17.
(Ⅰ) ① (+
)2-(2+1)2=2
-4>0.
故+
>2+1,即
-1>2-
.················································· 4分
② (2+)2-(
+
)2=4
-2
=2
-2
>0.
故2+>
+
,即2-
>
-
. 7分
(Ⅱ) 一般结论:若n是正整数,则-
>
-
.······ 10分
证明:与(Ⅰ)类似(从略).······································································· 12分
18.
过点M与x轴垂直的直线显然不合要求,故可设所求直线方程为y=kx+1,
············································································································· 2分
若此直线与两已知直线分别交于A、B两点,则解方程组可得
xA=,xB=
.········································································ 6分
由题意+
=0,
∴k=-. 10分
故所求直线方程为x+4y-4=0.···························································· 12分
另解一:设所求直线方程y=kx+1,
代入方程(x-3y+10)(2x+y-8)=0,
得(2-5k-3k2)x2+(28k+7)x-49=0.
由xA+xB=-=2xM=0,解得k=-
.
∴直线方程为x+4y-4=0.
另解二:∵点B在直线2x-y-8=0上,故可设B(t,8-2t),由中点公式得A(-t,2t-6).
∵点A在直线x-3y+10=0上,
∴(-t)-3(2t-6)+10=0,得t=4.∴B(4,0).故直线方程为x+4y-4=0.
19. 理科:
(Ⅰ) 要使圆的面积最小,则AB为圆的直径,
∴所求圆的方程为(x-2)(x+2)+(y+3)(y+5)=0,即
x2+(y+4)2=5.······················································································ 5分
(Ⅱ) 因为kAB=12,AB中点为(0,-4),
所以AB中垂线方程为y+4=-2x,即2x+y+4=0.······························ 8分
解方程组得
即圆心为(-1,-2).
根据两点间的距离公式,得半径r=,
因此,所求的圆的方程为(x+1)2+(y+2)2=10.······································ 12分
另解:设所求圆的方程为(x-a)2+(y-b)2=r2,根据已知条件得
所以所求圆的方程为(x+1)2+(y+2)2=10.
文科:
解:由得交点
,即所求圆的圆心为
.··················· 5分
设所求的方程为,················································· 7分
则,
故圆的方程为.························································ 12分
20.
由题意可知抛物线的焦点到准线间的距离为2C(即双曲线的焦距).
设抛物线的方程为 4分
∵抛物线过点 ①
又知 ② 8分
由①②可得, 10分
∴所求抛物线的方程为,双曲线的方程为
.··········· 12分
21. 理科:
原不等式化为(Ⅰ)或(Ⅱ)
即(Ⅰ)或(Ⅱ)
········································· 4分
(1)当0<a<1时,对于(Ⅰ)有3<x<
;
对于(Ⅱ)有x∈
.
∴当0<a<1时,解集为{x3<x<.············································ 8分
(2)当a=1时,解集为{xx>3}. 10分
(3)当a>1时,解(Ⅰ)得x>3,(Ⅱ)得x<,
此时解集为{xx>3或x<.··························································· 12分
文科:
原不等可化为 . 3分
又 ,故
①当或
时,
.则
;······································ 6分
②当时,
.则
;············································· 8分
③当或
时,不等式为
或
,此时无解.·········· 10分
综上:当或
时,
.则不等式的解集是
;当
时,
.则不等式的解集是
;当
或
时,不等式等价于
或
,无解. 12分
22.
理科:
(Ⅰ)∵·
=1,∴
·
·cosθ=1.
又·
·sin(180°-θ)=S,
∴tanθ=2S,S=.········································································ 3分
又<S<2,∴
<
<2,即1<tanθ<4,
∴<θ<arctan4.·················································································· 5分
(Ⅱ) 以
所在的直线为x轴,以
的过O点的垂线为y轴建立直角坐标系(如图). 6分
∴O(0,0),F(c,0),Q(x0,y0).
设椭圆方程为+
=1.
又·
=1,S=
c,
∴(c,0)·(x0-c,y0)=1. ①
·c·y0=
c.
②························································ 8分
由①得c(x0-c)=1x0=c+
.
由②得y0=.
∴=
=
. ·················································· 10分
∵c≥2,
∴当c=2时,min=
=
,
此时Q(,±
),F(2,0).·································································· 12分
代入椭圆方程得
∴a2=10,b2=6.∴椭圆方程为.·············································· 14分
文科
(Ⅰ) ∵H点坐标为(x,y),则D点坐标为(x,0),
由定比分点坐标公式可知,A点的坐标为(x,y).
∴=(x+2,y),
=(x-2,
y).························································· 4分
由BH⊥CA知x2-4+y2=0,即
+
=1,
∴G的方程为+
=1(y≠0).·························································· 7分
(Ⅱ) 显然P、Q恰好为G的两个焦点,
∴+
=4,
=2.
若,
,
成等差数列,则
+
=
=1.
∴·
=
+
=4.······················································ 11分
由可得
=
=2,
∴M点为+
=1的短轴端点.
∴当M点的坐标为(0, )或(0,-
)时,
,
,
成等差数列.
14分