当前位置:首页 -高中数学试卷 - 高中二年级数学试题 - 正文*

高二数学单元测试——不等式(理科)

2014-5-11 0:19:03下载本试卷

高二数学单元测试——不等式(理科)

班级         姓名      

一、选择题:(每小题5分,共60分,)

1.不等式同时成立的充要条件是(  ).

(A)  (B)   (C)    (D)

2.已知,且,则(   ).

(A)  (B)  (C)  (D)

3.下列结论正确的是(  ).

(A)当   (B)

(C)当时,的最小值为2   (D)当时,无最大值

4.已知,则不等式的解是(  ).

(A)        (B)

(C),或     (D),或

5.已知,则的最小值是 (   ).

(A)     ( B)      (C) 6       (D) 7

6.不等式的解集是         (   )

A        B.(1,5)       C.[1,+∞)     D.(1,+∞)

7.(2004年天津卷)不等式的解集为        (   )

  A.              B.

  C.             D.

8.(2004年北京卷)已知a、b、c满足,且,那么下列选项中不一定成立的是( )

  A.    B.  C.    D.

哈五中06年不等式测试(理科)第1页  共4页

 
9.(2004年湖南卷)设则以下不等式中不恒成立的是       (   )

  A.        B.

  C.       D.

10.(2004年全国卷III)不等式的解集为     (   )

  A.      B.

  C.        D.

11.(2004年全国卷IV)不等式的解集为      (   )

  A.      B. C.    D.

12.(2005重庆卷理)若x,y是正数,则的最小值是(   )

  A.3       B.       C.4       D.

二.填空题:(每小题4分,共16分)

13.(2006年上海卷)不等式的解集是        .

14.(2006年江苏卷)不等式的解集为          

15. 若不等式x-4+x-3>a 对一切实数恒成立,则a的取值范围为_______.

16. 若,则的最小值为          .

三.解答题:(本题共74分)

17.(本题满分12分)证明下列不等式:

(1)已知都是正数,求证:

(2)已知,求证:

哈五中06年不等式测试(理科)第2页  共4页

 


18.(本题满分12分)已知函数,求的取值范围。

19.(本题满分12分)(1)求函数的值域。

(2)已知,求的最大值。

20.(本题满分12分)

(1)解下列不等式:>x+5

哈五中06年不等式测试(理科)第3页  共4页

 


(2)当为何值时,不等式对于任意实数恒成立。

21.(本题满分12分)(2005全国理)

设函数,求使取值范围.

22.(本题满分14分)(2005江西理)

已知函数ab为常数)且方程有两个实根为.

  (1)求函数的解析式;

哈五中06年不等式测试(理科)第4页  共4页

 
  (2)设,解关于的不等式;


参考答案

一选择题

1B,2B,3B,4D,5D,6D,7A8C,9B,10A,11D,12C

二.填空题

13.,14.,15.,16..

三.解答题

17.(1)

当且仅当时,取“=”号.

(2)

当且仅当时,取“=”号.

18.

解出

.

,即

20.

(1)

分以下两类情况讨论:

①当时,,则

当且仅当,即时,取“=”号

②当时,,此时

当且仅当,即时,取“=”号

综上,的值域为

(2)

,当且仅当,即时,取“=”号

的最大值为.

20.

(1)原不等式同解于(Ⅰ)或(Ⅱ)

解(Ⅰ)得;解(Ⅱ)得.

所以原不等式的解集为

(2)恒大于0原不等式同解于

.

由已知它对于任意实数恒成立,则有

解出为所求.

21. 解:即解

  分三类 ①

  ①②③求并集得 x的取值范围是[

22. (1)将

(2)不等式即为

①当

②当

.