高二年下学期数学期中试卷参考答案
一. 选择题(本题共36 分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
答案 | D | C | A | A | B | D | C | B | D | D | A | C |
二、填空题(本题共16分)
13. 14.
15. 16.④
三、解答题(本题共48分)
17.解:
(1)依题意知展开式中的第
项为
………………
∴前三项系数的绝对值为:即
………
依题意知,……………………
∴…………………………………………………
(2)由(1)知,令
得
……
∴第五项为常数项……………………………
(3)令得各项系数和为
…………………………
18.解:
分别记“甲、乙、丙参加入学考试,考试合格”为事件A、B、C则A、B、C彼此独立,并且………………………
(1)“三个人中恰有两人合格”包括三种情况:
且它们彼此互斥……………………………………………
故“三个人中恰有两人合格”的概率为:………
……………………………………………………………………………
(2)法一:
“三人无一人合格”的概率为……………………
又“三人无一人合格”是“三人中至少有一个合格”的对立事件……………
故“三人中至少有一人合格”的概率为…………
法二:“三人中至少有一人合格”包括七种情况:
……………………………
“三人中至少有一人合格”的概率为:
…………………
……………………………………………………………………………
19.解:
孩子一对基因可能为其概率分别为
,…………
孩子有显性决定特征的有或
………………………………………
(1)1个孩子有显性决定特征的概率为……………………
(2)2个孩子中至少有一个有显性决定特征的概率为:
…………
另解:……………………
20.证明:
(1)∵∴
………………………………
又∴
……………………………………………………………
∴
…………………………………………
21.解:(1)在长方体ABCD—A1B1C1D1中,
∴
为
与
的公垂线段…………
在中,
∴与
的距离为
…………………………………………
(2)连结AC、BD交于点O,取DD1中点O1,连结O O1∵O为BD中点
∴O O1∥BD1又A1C1//AC
∴∠AOO1(或其补角)为BD1和A1C1所成的角。………………
在中,
∴
连结,在
中,
……
又∴
从而
………
在中,
……………
∴BD1和A1C1所成的角的余弦值为
22.证明:
(1)连结,在正方体ABCD—A1B1C1D1中,
∵∴
∴………………………………………………………
又∴
又
………………
∴……………………………………………
(2)∵
∴(三垂线定理)…………………………………
同理可证……………………………………………
又
∴………………………………………………
又
∴…………………………………………………