当前位置:首页 -高中数学试卷 - 高中三年级数学试题 - 正文*

高考数学普通高等学校招生全国统一考试113

2014-5-11 0:20:18下载本试卷

高考数学普通高等学校招生全国统一考试113

理科数学

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷

注意事项:

1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:

如果时间A、B互斥,那么

如果时间A、B相互独立,那么

如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率

球的表面积公式,其中R表示球的半径

球的体积公式,其中R表示球的半径

一、选择题

⑴、设集合,则

A.             B.

C.             D.

⑵、已知函数的图象与函数的图象关于直线对称,则

A.          B.

C.          D.

⑶、双曲线的虚轴长是实轴长的2倍,则

A.        B.       C.      D.

⑷、如果复数是实数,则实数

A.        B.      C.       D.

⑸、函数的单调增区间为

A.       B.

C.       D.

⑹、的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则

A.        B.      C.       D.

⑺、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是

A.       B.     C.       D.

⑻、抛物线上的点到直线距离的最小值是

A.        B.      C.        D.

⑼、设平面向量的和。如果向量,满足,且顺时针旋转后与同向,其中,则

A.           B.

C.            D.

⑽、设是公差为正数的等差数列,若,则

A.        B.      C.       D.

⑾、用长度分别为2、3、4、5、6(单位:)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为

A.    B.      C.      D.

⑿、设集合。选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有

A.    B.        C.       D.

普通高等学校招生全国统一考试

理科数学

第Ⅱ卷

注意事项:

1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2.第Ⅱ卷共2页,请用黑色签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。

3.本卷共10小题,共90分。

二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上。

⒀、已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于_______________。

⒁、设,式中变量满足下列条件

则z的最大值为_____________。

⒂、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种。(用数字作答)

⒃、设函数。若是奇函数,则__________。

三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。

⒄、(本小题满分12分)

的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。

⒅、(本小题满分12分)

A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为

(Ⅰ)求一个试验组为甲类组的概率;

(Ⅱ)观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。

⒆、(本小题满分12分)

如图,是互相垂直的异面直线,MN是它们的公垂线段。点A、B在上,C在上,

(Ⅰ)证明

(Ⅱ)若,求与平面ABC所成角的余弦值。

⒇、(本小题满分12分)

在平面直角坐标系中,有一个以为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求:

(Ⅰ)点M的轨迹方程;

(Ⅱ)的最小值。

(21)、(本小题满分14分)

已知函数

(Ⅰ)设,讨论的单调性;

(Ⅱ)若对任意恒有,求的取值范围。

(22)、(本小题满分12分)

设数列的前项的和

(Ⅰ)求首项与通项

(Ⅱ)设,证明:

一、选择题: 1.B 2.D 3.A 4.B 5.C 6.B 7.C 8.A  9.D  10.B  11.B  12.B

二、填空题: 13.   14. 11  15. 2400   16. 

三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。

17.解: 由A+B+C=π, 得 = - , 所以有cos =sin .

cosA+2cos =cosA+2sin =1-2sin2 + 2sin

=-2(sin - )2+

当sin = , 即A=时, cosA+2cos取得最大值为

18.解: (1)设Ai表示事件“一个试验组中,服用A有效的小鼠有i只" , i=0,1,2,

Bi表示事件“一个试验组中,服用B有效的小鼠有i只" , i=0,1,2,

依题意有: P(A1)=2×× = , P(A2)= × = . P(B0)= × = ,

P(B1)=2× × = , 所求概率为: P=P(B0·A1)+P(B0·A2)+P(B1·A2)

= × + × + × =

(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,) . P(ξ=0)=()3= , P(ξ=1)=C31××()2=

, P(ξ=2)=C32×()2× =  , P(ξ=3)=( )3=

ξ

0

1

2

3

P

ξ的分布列为:

数学期望: Eξ=3× = .

19.解法一: (Ⅰ)由已知l2⊥MN, l2l1 , MN∩l1 =M, 可得l2⊥平面ABN.由已知MN⊥l1 , AM=MB=MN,可知AN=NB且AN⊥NB. 又AN为AC在平面ABN内的射影.

∴AC⊥NB

(Ⅱ)∵Rt△CAN≌Rt△CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.

∵Rt△ANB≌Rt△CNB, ∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连结BH,∠NBH为NB与平面ABC所成的角.

在Rt△NHB中,cos∠NBH= = = .

解法二: 如图,建立空间直角坐标系M-xyz.令MN=1, 则有A(-1,0,0),B(1,0,0),N(0,1,0),

(Ⅰ)∵MN是 l1l2的公垂线, l1l2, ∴l2⊥平面ABN. l2平行于z轴. 故可设C(0,1,m).于是 =(1,1,m), =(1,-1,0). ∴·=1+(-1)+0=0 ∴AC⊥NB.

(Ⅱ)∵ =(1,1,m), =(-1,1,m), ∴=, 又已知∠ACB=60°,∴△ABC为正三角形,AC=BC=AB=2. 在Rt△CNB中,NB=, 可得NC=,故C(0,1, ).

连结MC,作NH⊥MC于H,设H(0,λ, λ) (λ>0). ∴=(0,1-λ,-λ),

=(0,1, ). · = 1-λ-2λ=0, ∴λ= ,

∴H(0, , ), 可得=(0,, - ), 连结BH,则=(-1,, ),

∵·=0+ - =0, ∴⊥, 又MC∩BH=H,∴HN⊥平面ABC,

∠NBH为NB与平面ABC所成的角.又=(-1,1,0),

∴cos∠NBH= =  =

20.解: 椭圆方程可写为: + =1  式中a>b>0 , 且  得a2=4,b2=1,所以曲线C的方程为: x2+ =1 (x>0,y>0). y=2(0<x<1) y '=-

设P(x0,y0),因P在C上,有0<x0<1, y0=2, y 'x=x0= - ,得切线AB的方程为:

y=- (x-x0)+y0 . 设A(x,0)和B(0,y),由切线方程得 x= , y= .

由= +得M的坐标为(x,y), 由x0,y0满足C的方程,得点M的轨迹方程为:

+ =1 (x>1,y>2) 

(Ⅱ) 2= x2+y2, y2= =4+ ,

2= x2-1++5≥4+5=9.且当x2-1= ,即x=>1时,上式取等号.

故的最小值为3.

21.解(Ⅰ)f(x)的定义域为(-∞,1)∪(1,+∞).对f(x)求导数得 f '(x)= e-ax.  

(ⅰ)当a=2时, f '(x)= e-2x, f '(x)在(-∞,0), (0,1)和(1,+ ∞)均大于0, 所以f(x)在(-∞,1), (1,+∞).为增函数.

(ⅱ)当0<a<2时, f '(x)>0, f(x)在(-∞,1), (1,+∞)为增函数.

(ⅲ)当a>2时, 0<<1, 令f '(x)=0 ,解得x1= - , x2= .

当x变化时, f '(x)和f(x)的变化情况如下表:

x

(-∞, -)

(-,)

(,1)

(1,+∞)

f '(x)

f(x)

f(x)在(-∞, -), (,1), (1,+∞)为增函数, f(x)在(-,)为减函数.

(Ⅱ)(ⅰ)当0<a≤2时, 由(Ⅰ)知: 对任意x∈(0,1)恒有f(x)>f(0)=1.

(ⅱ)当a>2时, 取x0= ∈(0,1),则由(Ⅰ)知 f(x0)<f(0)=1

(ⅲ)当a≤0时, 对任意x∈(0,1),恒有 >1且eax≥1,得

f(x)= eax≥ >1. 综上当且仅当a∈(-∞,2]时,对任意x∈(0,1)恒有f(x)>1.

22.解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3,… , ① 得 a1=S1= a1-×4+ 所以a1=2.

再由①有 Sn1=an1-×2n+, n=2,3,4,…

将①和②相减得: an=Sn-Sn1= (an-an1)-×(2n+1-2n),n=2,3, …

整理得: an+2n=4(an1+2n1),n=2,3, … , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …,

(Ⅱ)将an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2)

  = ×(2n+1-1)(2n-1)  

 Tn= = × = ×( - )

所以, = - ) = ×( - ) <