绝密★启用前
高考数学普通高等学校招生全国统一考试115
数学(理工农医类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3
至4页.考试结束后,将本试卷和答题卡一并交回.满分150分,考试时间120分钟.
注意事项:
1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.
2. 每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.答在试卷上的答案无效.
参考公式:
如果事件A、B互斥,那么 球的表面公式
P(A+B)=P(A)+P(B) S=4πR2
如果事件A、B相互独立,那么 其中R表示球的半径
P(AB)=P(A)
P(B) 球的体积公式
如果事件A在一次试验中发生的概率是P,那么 V=πR2
n次独立重复试验中恰好发生k次的概率 其中R表示球的半径
P(k)=Pk(1-P)n-k
本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
第Ⅰ卷(选择题 共30分)
一、选择题
(1)已知集合M={xx<3},N={xlog2x>1},则M∩N=
(A)
(B){x0<x<3}
(C){x1<x<3} (D){x2<x<3}
(2)函数y=sin2xcos2x的最小正周期是
(A)2π (B)4π (C) (D)
(3)=
(A)i
(B)-i
(C)
(D)-
(4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为
(A) (B) (C) (D)
(5)已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是
(A)2 (B)6 (C)4 (D)12
(6)函数y=lnx-1(x>0)的反函数为
(A)y=ex+1(x∈R) (B)y=ex-1(x∈R)
(C)y=ex+1(x>1) (D)y=ex-1(x>1)
(7)如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和,过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB∶A′B′=
(A)2∶1 (B)3∶1
(C)3∶2 (D)4∶3
(8)函数y=f(x)的图像与函数g(x)=log2x(x>0)的图像关于原点
对称,则f(x)的表达式为
(A)f(x)=(x>0) (B)f(x)=log2(-x)(x<0)
(C)f(x)=-log2x(x>0) (D)f(x)=-log2(-x)(x<0)
(9)已知双曲线的一条渐近线方程为y=x,则双曲线的离心率为
(A) (B) (C) (D)
(10)若f(sinx)=3-cos2x,则f(cosx)=
(A)3-cos2x (B)3-sin2x (C)3+cos2x (D)3+sin2x
(11)设Sn是等差数列{an}的前n项和,若=,则=
(A) (B) (C) (D)
(12)函数的最小值为
(A)190 (B)171 (C)90 (D)45
绝密★启用前
2006年普通高等学校招生全国统一考试
数学(理工农医类)
第Ⅱ卷
(本卷共10小题,共90分)
注意事项:
1.考生不能将答案直接答在试卷上,必须答在答题卡上.
2.答题前,请认真阅读答题卡上的“注意事项”.
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡上.
(13)在(x4+)10的展开式中常数项是 (用数字作答)
(14)已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为 .
(15)过点(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k= .
(16)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 人.
![]() |
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
已知向量,
.
(Ⅰ)若,求
;
(Ⅱ)求的最大值.
(18)(本小题满分12分)
某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.
(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;
(Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.
(19)(本小题满分12分)
如图,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.
(Ⅰ)证明:ED为异面直线BB1与AC1的公垂线;
(Ⅱ)设AA1=AC=AB,求二面角A1-AD-C1的大小.
(20)(本小题满分12分)
设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.
(21)(本小题满分14分)
已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且=λ(λ>0).过A、B两点分别作抛物线的切线,设其交点为M.
(Ⅰ)证明·为定值;
(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.
(22)(本小题满分12分)
设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,….
(Ⅰ)求a1,a2;
(Ⅱ){an}的通项公式.
2006年普通高等学校招生全国统一考试
理科数学试题(必修+选修Ⅱ)参考答案和评分参考
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数—选择题和填空题不给中间分.
一、选择题
⑴D ⑵D ⑶A ⑷A ⑸C ⑹B ⑺A ⑻D ⑼A ⑽C ⑾A ⑿C
二、填空题
⒀45 ⒁ ⒂ ⒃25
三、解答题
17.解:(Ⅰ)若a⊥b,则sinθ+cosθ=0,……………2分
由此得 tanθ=-1(-<θ<),所以 θ=-;………………4分
(Ⅱ)由a=(sinθ,1),b=(1,cosθ)得
|a+b|==
=,………………10分
当sin(θ+)=1时,a+b取得最大值,即当θ=时,a+b最大值为+1.……12分
18.解:(Ⅰ)ξ可能的取值为0,1,2,3.
P(ξ=0)=·==, P(ξ=1)=·+·=
P(ξ=2)=·+·=, P(ξ=3)=·=. ………………8分
ξ的分布列为
ξ | 0 | 1 | 2 | 3 |
P |
数学期望为Eξ=1.2.
(Ⅱ)所求的概率为
p=P(ξ≥2)=P(ξ=2)+P(ξ=3)=+= ……………12分
19.解法一:
(Ⅰ)设O为AC中点,连接EO,BO,则EO∥=C1C,又C1C∥=B1B,所以EO∥=DB,EOBD为平行四边形,ED∥OB. ……2分
∵AB=BC,∴BO⊥AC,
又平面ABC⊥平面ACC1A1,BOÌ面ABC,故BO⊥平面ACC1A1,
∴ED⊥平面ACC1A1,BD⊥AC1,ED⊥CC1,
∴ED⊥BB1,ED为异面直线AC1与BB1的公垂线.……6分
(Ⅱ)连接A1E,由AA1=AC=AB可知,A1ACC1为正方形,
∴A1E⊥AC1,又由ED⊥平面ACC1A1和EDÌ平面ADC1知
平面ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EF⊥AD,垂足为F,连接A1F,
则A1F⊥AD,∠A1FE为二面角A1-AD-C1的平面角.
不妨设AA1=2,则AC=2,AB=ED=OB=1,EF==,
tan∠A1FE=,∴∠A1FE=60°.
所以二面角A1-AD-C1为60°. ………12分
解法二:
(Ⅰ)如图,建立直角坐标系O-xyz,其中原点O为AC的中点.
设A(a,0,0),B(0,b,0),B1(0,b,2c).
则C(-a,0,0),C1(-a,0,2c),E(0,0,c),D(0,b,c). ……3分
=(0,b,0),=(0,0,2c).
·=0,∴ED⊥BB1.
又=(-2a,0,2c),
·=0,∴ED⊥AC1, ……6分
所以ED是异面直线BB1与AC1的公垂线.
(Ⅱ)不妨设A(1,0,0),则B(0,1,0),C(-1,0,0),A1(1,0,2),
=(-1,-1,0),=(-1,1,0),=(0,0,2),
·=0,·=0,即BC⊥AB,BC⊥AA1,又AB∩AA1=A,
∴BC⊥平面A1AD.又 E(0,0,1),D(0,1,1),C(-1,0,1),
=(-1,0,-1),=(-1,0,1),=(0,1,0),
·=0,·=0,即EC⊥AE,EC⊥ED,又AE∩ED=E,
∴ EC⊥面C1AD. ……10分
cos<,>==,即得和的夹角为60°.
所以二面角A1-AD-C1为60°. ………12分
20.解法一:
令g(x)=(x+1)ln(x+1)-ax,
对函数g(x)求导数:g′(x)=ln(x+1)+1-a
令g′(x)=0,解得x=ea-1-1, ……5分
(i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,
又g(0)=0,所以对x≥0,都有g(x)≥g(0),
即当a≤1时,对于所有x≥0,都有 f(x)≥ax. ……9分
(ii)当a>1时,对于0<x<ea-1-1,g′(x)<0,所以g(x)在(0,ea-1-1)是减函数,
又g(0)=0,所以对0<x<ea-1-1,都有g(x)<g(0),
即当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.
综上,a的取值范围是(-∞,1]. ……12分
解法二:令g(x)=(x+1)ln(x+1)-ax,
于是不等式f(x)≥ax成立即为g(x)≥g(0)成立. ……3分
对函数g(x)求导数:g′(x)=ln(x+1)+1-a
令g′(x)=0,解得x=ea-1-1, ……6分
当x> ea-1-1时,g′(x)>0,g(x)为增函数,
当-1<x<ea-1-1,g′(x)<0,g(x)为减函数, ……9分
所以要对所有x≥0都有g(x)≥g(0)充要条件为ea-1-1≤0.
由此得a≤1,即a的取值范围是(-∞,1]. ……12分
21.解:(Ⅰ)由已知条件,得F(0,1),λ>0.
设A(x1,y1),B(x2,y2).由=λ,
即得 (-x1,1-y)=λ(x2,y2-1),
将①式两边平方并把y1=x12,y2=x22代入得 y1=λ2y2 ③
解②、③式得y1=λ,y2=,且有x1x2=-λx22=-4λy2=-4,
抛物线方程为y=x2,求导得y′=x.
所以过抛物线上A、B两点的切线方程分别是
y=x1(x-x1)+y1,y=x2(x-x2)+y2,
即y=x1x-x12,y=x2x-x22.
解出两条切线的交点M的坐标为(,)=(,-1). ……4分
所以·=(,-2)·(x2-x1,y2-y1)=(x22-x12)-2(x22-x12)=0
所以·为定值,其值为0. ……7分
(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=ABFM.
FM===
==+.
因为AF、BF分别等于A、B到抛物线准线y=-1的距离,所以
AB=AF+BF=y1+y2+2=λ++2=(+)2.
于是 S=ABFM=(+)3,
由+≥2知S≥4,且当λ=1时,S取得最小值4.
22.解:(Ⅰ)当n=1时,x2-a1x-a1=0有一根为S1-1=a1-1,
于是(a1-1)2-a1(a1-1)-a1=0,解得a1=.
当n=2时,x2-a2x-a2=0有一根为S2-1=a2-,
于是(a2-)2-a2(a2-)-a2=0,解得a1=.
(Ⅱ)由题设(Sn-1)2-an(Sn-1)-an=0,
即 Sn2-2Sn+1-anSn=0.
当n≥2时,an=Sn-Sn-1,代入上式得
Sn-1Sn-2Sn+1=0 ①
由(Ⅰ)知S1=a1=,S2=a1+a2=+=.
由①可得S3=.
由此猜想Sn=,n=1,2,3,…. ……8分
下面用数学归纳法证明这个结论.
(i)n=1时已知结论成立.
(ii)假设n=k时结论成立,即Sk=,
当n=k+1时,由①得Sk+1=,即Sk+1=,
故n=k+1时结论也成立.
综上,由(i)、(ii)可知Sn=对所有正整数n都成立. ……10分
于是当n≥2时,an=Sn-Sn-1=-=,
又n=1时,a1==,所以
{an}的通项公式,n=1,2,3,…. ……12分