当前位置:首页 -高中数学试卷 - 高中三年级数学试题 - 正文*

高考数学普通高等学校招生全国统一考试92

2014-5-11 0:20:19下载本试卷

高考数学普通高等学校招生全国统一考试92

理科数学

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至4页。全卷满分150分,考试时间120分钟。

考生注意事项:

1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。

2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。在试题卷上作答无效。

4.考试结束,监考人员将试题卷和答题卡一并收回。

参考公式:

如果时间A、B互斥,那么

如果时间A、B相互独立,那么

如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率

球的表面积公式,其中R表示球的半径

球的体积公式,其中R表示球的半径

第Ⅰ卷(选择题 共60分)

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)、复数等于

A.         B.         C.     D.

 (2)、设集合,则等于

A.        B.   C.      D.

(3)、若抛物线的焦点与椭圆的右焦点重合,则的值为

A.        B.   C.      D.

(4)、设,已知命题;命题,则成立的

A.必要不充分条件        B.充分不必要条件       

C.充分必要条件         D.既不充分也不必要条件

           

(5)、函数           的反函数是

         , 

      ,                  

 A.                B.      

      ,             ,  

    ,                   

C.                D.

                  , 

(6)、将函数的图象按向量平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是

  A.

B.

C.

D.

 (7)、若曲线的一条切线与直线垂直,则的方程为

  A.

B.

C.

D.

 (8)、设,对于函数,下列结论正确的是

  A.有最大值而无最小值

B.有最小值而无最大值

C.有最大值且有最小值

D.既无最大值又无最小值

 (9)、表面积为 的正八面体的各个顶点都在同一个球面上,则此球的体积为

 A.        B.   C.       D.

                 

(10)、如果实数满足条件  ,  那么的最大值为

                  

 A.        B.   C.       D.

(11)、如果的三个内角的余弦值分别等于的三个内角的正弦值,则

A.都是锐角三角形

B.都是钝角三角形

C.是钝角三角形,是锐角三角形

D.是锐角三角形,是钝角三角形

  (12)、在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为

   A.        B.   C.       D.

高等学校招生全国统一考试

理科数学

第Ⅱ卷(非选择题 共90分)

注意事项:

请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。

二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。

  (13)、设常数展开式中的系数为,则__________。

  (14)、在中,,M为BC的中点,则_______。(用表示)

  (15)、函数对于任意实数满足条件,若_______________。

  (16)、多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:

    ①3;   ②4;  ③5;  ④6;  ⑤7

   以上结论正确的为________________________。(写出所有正确结论的编号)

三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤

  (17)、(本大题满分12分)

已知

(Ⅰ)求的值;

(Ⅱ)求的值。

(18)、(本大题满分12分)

在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。用表示所选用的两种不同的添加剂的芳香度之和。

(Ⅰ)写出的分布列;(以列表的形式给出结论,不必写计算过程)

(Ⅱ)求的数学期望。(要求写出计算过程或说明道理)

(19)、(本大题满分12分)

如图,P是边长为1的正六边形ABCDEF所在平面外一点,,P在平面ABC内的射影为BF的中点O。

(Ⅰ)证明

(Ⅱ)求面与面所成二面角的大小。

(20)、(本大题满分12分)

已知函数在R上有定义,对任何实数和任何实数,都有

(Ⅰ)证明

              

(Ⅱ)证明           其中均为常数;

               

(Ⅲ)当(Ⅱ)中的时,设,讨论内的单调性并求极值。

(21)、(本大题满分12分)

数列的前项和为,已知

(Ⅰ)写出的递推关系式,并求关于的表达式;

(Ⅱ)设,求数列的前项和

(22)、(本大题满分14分)

如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,

(Ⅰ)写出双曲线C的离心率的关系式;

(Ⅱ)当时,经过焦点F且品行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。

普通高等学校招生全国统一考试

理科数学

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至4页。全卷满分150分,考试时间120分钟。

考生注意事项:

1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。

2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。在试题卷上作答无效。

4.考试结束,监考人员将试题卷和答题卡一并收回。

参考公式:

如果时间A、B互斥,那么

如果时间A、B相互独立,那么

如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率

球的表面积公式,其中R表示球的半径

球的体积公式,其中R表示球的半径

第Ⅰ卷(选择题 共60分)

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数等于(  )

A.         B.         C.     D.

解:故选A

(2)设集合,则等于(  )

A.        B.   C.       D.

解:,所以,故选B。

(3)若抛物线的焦点与椭圆的右焦点重合,则的值为(  )

A.        B.   C.       D.

解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D。

(4)设,已知命题;命题,则成立的(  )

A.必要不充分条件 B.充分不必要条件C.充分必要条件  D.既不充分也不必要条件

解:命题是命题等号成立的条件,故选B。

(5)函数  的反函数是(  )

A. B. C. D.

解:有关分段函数的反函数的求法,选C。

(6)将函数的图象按向量平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是(  )

 A. B.

C. D.

解:将函数的图象按向量平移,平移后的图象所对应的解析式为,由图象知,,所以,因此选C。

(7)若曲线的一条切线与直线垂直,则的方程为(  )

A.  B. C.  D.

解:与直线垂直的直线,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为,故选A

(8)设,对于函数,下列结论正确的是(  )

A.有最大值而无最小值 B.有最小值而无最大值

C.有最大值且有最小值 D.既无最大值又无最小值

解:令,则函数的值域为函数的值域,又,所以是一个减函减,故选B。

(9)表面积为 的正八面体的各个顶点都在同一个球面上,则此球的体积为

 A.        B.   C.       D.

解:此正八面体是每个面的边长均为的正三角形,所以由知,,则此球的直径为,故选A。

(10)如果实数满足条件 ,那么的最大值为(  )

A.        B.   C.       D.

解:当直线过点(0,-1)时,最大,故选B。

(11)如果的三个内角的余弦值分别等于的三个内角的正弦值,则(  )

A.都是锐角三角形   B.都是钝角三角形

C.是钝角三角形,是锐角三角形

D.是锐角三角形,是钝角三角形

解:的三个内角的余弦值均大于0,则是锐角三角形,若是锐角三角形,由,得,那么,,所以是钝角三角形。故选D。

(12)在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为(  )

   A.        B.   C.       D.

解:在正方体上任选3个顶点连成三角形可得个三角形,要得直角非等腰三角形,则每个顶点上可得三个(即正方体的一边与过此点的一条面对角线),共有24个,得,所以选C。

2006年普通高等学校招生全国统一考试(安徽卷)理科数学

第Ⅱ卷(非选择题 共90分)

注意事项:

请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效

二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。

(13)设常数展开式中的系数为,则_____。

解:,由,所以,所以为1。

(14)在中,,M为BC的中点,则_______。(用表示)

解:,所以

(15)函数对于任意实数满足条件,若__________。

解:由,所以,则

(16)多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:

①3;   ②4;  ③5;  ④6;  ⑤7

以上结论正确的为______________。(写出所有正确结论的编号

解:如图,B、D、A1到平面的距离分别为1、2、4,则D、A1的中点到平面的距离为3,所以D1到平面的距离为6;B、A1的中点到平面的距离为,所以B1到平面的距离为5;则D、B的中点到平面的距离为,所以C到平面的距离为3;C、A1的中点到平面的距离为,所以C1到平面的距离为7;而P为C、C1、B1、D1中的一点,所以选①③④⑤。

三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤

(17)(本大题满分12分)已知

(Ⅰ)求的值;

(Ⅱ)求的值。

解:(Ⅰ)由,即,又,所以为所求。

(Ⅱ)=

===

(18)(本大题满分12分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。用表示所选用的两种不同的添加剂的芳香度之和。

(Ⅰ)写出的分布列;(以列表的形式给出结论,不必写计算过程)

(Ⅱ)求的数学期望。(要求写出计算过程或说明道理)

解:(Ⅰ)

1

2

3

4

5

6

7

8

9

P

(Ⅱ)

(19)(本大题满分12分)如图,P是边长为1的正六边形ABCDEF所在平面外一点,,P在平面ABC内的射影为BF的中点O。

(Ⅰ)证明

(Ⅱ)求面与面所成二面角的大小。

解:(Ⅰ)在正六边形ABCDEF中,为等腰三角形,

∵P在平面ABC内的射影为O,∴PO⊥平面ABF,∴AO为PA在平面ABF内的射影;∵O为BF中点,∴AO⊥BF,∴PA⊥BF。

(Ⅱ)∵PO⊥平面ABF,∴平面PBF⊥平面ABC;而O为BF中点,ABCDEF是正六边形 ,∴A、O、D共线,且直线AD⊥BF,则AD⊥平面PBF;又∵正六边形ABCDEF的边长为1,∴

过O在平面POB内作OH⊥PB于H,连AH、DH,则AH⊥PB,DH⊥PB,所以为所求二面角平面角。

中,OH==

中,

(Ⅱ)以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),∴

设平面PAB的法向量为,则,得

设平面PDB的法向量为,则,得

(20)(本大题满分12分)已知函数在R上有定义,对任何实数和任何实数,都有

(Ⅰ)证明;(Ⅱ)证明 其中均为常数;

(Ⅲ)当(Ⅱ)中的时,设,讨论内的单调性并求极值。

证明(Ⅰ)令,则,∵,∴

(Ⅱ)①令,∵,∴,则

假设时,,则,而,∴,即成立。

②令,∵,∴

假设时,,则,而,∴,即成立。∴成立。

(Ⅲ)当时,

,得

时,,∴是单调递减函数;

时,,∴是单调递增函数;

所以当时,函数内取得极小值,极小值为

(21)(本大题满分12分)数列的前项和为,已知

(Ⅰ)写出的递推关系式,并求关于的表达式;

(Ⅱ)设,求数列的前项和

解:由得:,即,所以,对成立。

,…,相加得:,又,所以,当时,也成立。

(Ⅱ)由,得

(22)(本大题满分14分)如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,

(Ⅰ)写出双曲线C的离心率的关系式;

(Ⅱ)当时,经过焦点F且平行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。

解:∵四边形,∴,作双曲线的右准线交PM于H,则,又

(Ⅱ)当时,,双曲线为四边形是菱形,所以直线OP的斜率为,则直线AB的方程为,代入到双曲线方程得:

,由得:,解得,则,所以为所求。