2007年高三数学模拟试卷(三)
一.选择题:本大题共10小题,每小题5分,共10分.在每小题给出的四个选项中,选择一个符合题目要求的选项.
(1)定义集合运算:A⊙B={z︳z= xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为
(A)0 (B)6 (C)12 (D)18
(2)函数y=1+ax(0<a<1)的反函数的图象大致是
(A) (B) (C) (D)
(3)设f(x)= 则不等式f(x)>2的解集为
(A)(1,2)(3,+∞)
(B)(
,+∞)
(C)(1,2) (
,+∞) (D)(1,2)
(4)在△ABC中,角A、B、C的对边分别为a、b、c,A=,a=
,b=1,则c=
(A) 1
(B)2
(C)—1
(D)
(5)设向量=(1, -2),
=(-2,4),
=(-1,-2),若表示向量4
,4
-2
,2(
-
),
的有向线段首尾相接能构成四边形,则向量
为
(A)(2,12) (B)(-2,12) (C)(2,-12) (D)(-2,-12)
(6)已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则,f(6)的值为
(A)-1 (B) 0 (C) 1 (D)2
(7)在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为
(A)
(B)
(C)
(D)
(8)设p:x-x-20>0,q:
<0,则p是q的
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
(9)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为
(A)33 (B) 34 (C) 35 (D)36
(10)如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P-DCE三棱锥的外接球的体积为
(A)
(B)
(C)
(D)
(10题图)
二、填空题:本大题共6小题,每小题5分,共30分.答案须填在题中横线上.
(11)不等式的解集是 .
(12)展开式中
的系数为___________(用数字作答)。’
(13)双曲线上的点到左焦点的距离与到左准线的距离的比是3,则
等于
(14)已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于
两点,则
的最小值是
.
(15)如右图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD 与平面B1DC所成角的正弦值为 .
(16)下列四个命题中,真命题的序号有 (写出所有真命题的序号).
①将函数y=的图象按向量v=(-1,0)平移,得到的图象对应的函数表达式为y=
②圆x2+y2+4x+2y+1=0与直线y=相交,所得弦长为2
③若sin(+
)=
,sin(
-
)=
,则tan
cot
=5
④如右图,已知正方体ABCD- A1B1C1D1,P为底面ABCD内一动点,P到平面AA1D1D的距离与到直线CC1的距离相等,则P点的轨迹是抛物线的一部分.
(
三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)已知函数f(x)=A(A>0,
>0,0<
<
函数,且y=f(x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).
(1)求;
(2)计算f(1)+f(2)+ f(3)… +f(2 007).
(18)A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片,如果某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.
(19)(本小题满分12分)
如图,已知平面A1B1C1平行于三棱锥F-ABC的底面ABC,等边∆ AB1C所在的平面与底面ABC垂直,且ACB=90°,设AC=2a,BC=a.
(1)求证直线B1C1是异面直线AB1与A1C1的公垂线;
(2)求点A到平面FBC的距离;
(3)求二面角A-FB-C的大小.
(19题图)
(20)双曲线C与椭圆有相同的焦点,直线y=
为C的一条渐近线.
(1) 求双曲线C的方程;
(2) 过点P(0,4)的直线,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合).当
,且
时,求Q点的坐标.
(21)已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,…
(1) 证明数列{lg(1+an)}是等比数列;
(2) 设Tn=(1+a1) (1+a2) …(1+an),求Tn及数列{an}的通项;
(3) 记bn=,求{bn}数列的前项和Sn,并证明Sn+
=1.