2007年普通高等学校招生全国统一考试(湖北卷)
一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的.
1. 如果 的展开式中含有非零常数项,则正整数n的最小值为
A.3 B.5 C.6 D.10
2.将的图象按向量a=
平移,则平移后所得图象的解析式为
A.
B.
C. D.
3.设P和Q是两个集合,定义集合P-Q=,如果P={xlog2x<1},Q={xx-2<1},那么P-Q等于
A.{x0<x<1} B.{x0<x≤1} C.{x1≤x<2} D.{x2≤x<3}
4.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m'和n',给出下列四个命题:
①m'⊥n'm⊥n;
②m⊥n
m'⊥n'
③m'与n'相交m与n相交或重合; ④m'与n'平行
m与n平行或重合.
其中不正确的命题个数是
A.1 B.2 C.3 D.4
5.已知p和q是两个不相等的正整数,且q≥2,则
A.0
B.1
C.
D.
6.若数列{an}满足N*),则称{an}为“等方比数列”.
甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则
A. 甲是乙的充分条件但不是必要条件
B. 甲是乙的必要条件但不是充分条件
C. 甲是乙的充要条件
D. 甲既不是乙的充分条件也不是乙的必要条件
7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2.C1和C2的一个交点为M,则
等于
A.-1
B.1
C.
D.
8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得
为整数的正整数n的个数是
A.2 B.3 C.4 D.5
9.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是
A.
B.
C.
D
10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有
A.60条 B.66条 C.72条 D.78条
二、填空题:本大题共5小题,每小题5分,共25分.
11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= .
12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是 .(写出一个有序实数对即可)
13.设变量x,y满足约束条件
则目标函数2x+y的最小值为
.
14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率 . (用数值作答)
15.为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:
(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 .
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.
三、解答题:本大题共5小题,共75分. 解答应写出文字说明,证明过程或演算步骤.
16.(本小题满分12分)
已知△ABC的面积为3,且满足0≤≤6,设
和
的夹角为θ.
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=2sin2的最大值与最小值.
分 组 | 频 数 |
| 4 |
| 25 |
| 30 |
| 29 |
| 10 |
| 2 |
合 计 | 100 |
17.(本小题满分12分)
在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:
(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;
(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概率是多少;
(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表. 据此,估计纤度的期望.
18.(本小题满分12分)
如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,
D是AB的中点,且AC=BC=a,∠VDC=θ.
(Ⅰ)求证:平面VAB⊥平面VCD;
(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取
值范围.
19.(本小题满分12分)
在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2px(p>0)相交于A、B两点.
(Ⅰ)若点N是点C关于坐标原点O的对称点,
求△ANB面积的最小值;
(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.(此题不要求在答题卡上画图)
20.(本小题满分13分)
已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x) ≥g(x) (x>0).
21.(本小题满分14分)
已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知,求证
,m=1,1,2…,n;
(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n.