当前位置:首页 -高中数学试卷 - 高中三年级数学试题 - 正文*

南昌市高中新课程方案试验高三复习训练题数学(2)(函数1)

2014-5-11 0:20:29下载本试卷

南昌市高中新课程方案试验高三复习训练题

数学(二)(函数1)

二〇〇六年七月

命题人:江西师大附中 朱涤非  审题人:

班级___________  姓名_____________  学号____________  评分____________

一、选择题(本题共12小题,每小题5分,共60分)

1.已知集合A=R,B=R+,f:A→B是从A到B的一个映射,若f:x→2x-1,则B中的元素3的原象为                              (  )

    A.-1        B.1          C.2            D.3

2.函数f(x)=的定义域是                                   (   )

    A.-∞,0]    B.[0,+∞    C.(-∞,0)    D.(-∞,+∞)

3.设f(x)=x-1-x,则f[f()]=                  (   )

A. -     B.0      C.      D.1

4.若函数f(x) = + 2x + log2x的值域是 {3, -1, 5 + , 20},则其定义域是                                  (   )
(A) {0,1,2,4}  (B) {,1,2,4}  (C) {,2,4} (D) {,1,2,4,8}

5.反函数是                    (  )

A.        B.  

C.      D.

6.若任取x1x2∈[a,b],且x1x2,都有成立,则称f(x) 是[ab]上的凸函数。试问:在下列图像中,是凸函数图像的为   (  )                         

    

(A)         (B)          (C)         (D)

7..函数f(x)=在区间(-2,+∞)上单调递增,则实数a的取值范围是(  )

  A.(0,)       B.( ,+∞)  C.(-2,+∞)       D.(-∞,-1)∪(1,+∞)

8.下列函数既是奇函数,又在区间上单调递减的是           (  )

A.  B.  C.  D.

9.设函数 + b+ c 给出下列四个命题:

①c = 0时,y是奇函数          ②b0 , c >0时,方程0 只有一个实根

③y的图象关于(0 , c)对称       ④方程0至多两个实根

  其中正确的命题是                           (  )

A.①、④     B.①、③     C.①、②、③   D.①、②、④

 

10.已知函数f(x)=3-2x,g(x)=x2-2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x).那么F(x)                   (   )

     A.有最大值7-2,无最小值      B. 有最大值3,最小值-1 

C.有最大值3,无最小值         D.无最大值,也无最小值

11.已知函数是定义在上的奇函数,当时,

的图象如图所示,则不等式的解集是   (  )

    A. 

    B.

C.  

D.

12.设定义域为R的函数f(x)满足,且f(-1)=,则f(2006)的值为                           (  )

    A.-1           B.1            C.2006          D.

题号

答案

二、填空题(本题共4题,每小题4分,共16分)

13.已知a,b为常数,若  .

14.设函数f(x)的图象关于点(1,2)对称,且存在反函数f-1(x),f (4)=0,则f-1(4)=    .

15.若对于任意a[-1,1], 函数f(x) = x+ (a-4)x + 4-2a的值恒大于零,则x的取值范围是              .

16.设函数f(x)的定义域为R,若存在常数M>0,使得f(x)≤Mx对一切实数x均成立,则称f(x)为F函数,给出下列函数:

①f(x)=0;   ②f(x)=x2;   ③f(x)=(sinx+cosx);  ④f(x)=

⑤f(x)是定义在R上的奇函数,且对于任意实数x1,x2,均有f(x1)-f(x2)≤2x1-x2

则其中是F函数的序号是___________________

三、解答题(本题共6小题,共74分)

17.(本小题满分12分)判断y=1-2x3 在(-)上的单调性,并用定义证明。

18.(本小题满分12分)二次函数fx)满足f(0)=1.

(1)   求fx)的解析式;

(2)   在区间上,y= fx)的图象恒在y=2x+m的图象上方,试确定实数m的范围.

19.(本小题满分12分)已知函数a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3, x2=4.(1)求函数f(x)的解析式;

  (2)设k>1,解关于x的不等式;.

20.(本小题满分12分)已知某商品的价格上涨x%,销售的数量就减少mx%,其中m为正的常数。

(1)当m=时,该商品的价格上涨多少,就能使销售的总金额最大?

(2)如果适当地涨价,能使销售总金额增加,求m的取值范围

21.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.

(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);

(Ⅱ)设有且仅有一个实数x0,使得f(x)= x0,求函数f(x)的解析表达式.

22.(本小题满分14分)已知函数有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.

(1)如果函数>0)的值域为6,+∞,求的值;

(2)研究函数(常数>0)在定义域内的单调性,并说明理由;

(3)对函数(常数>0)作出推广,使它们都是你所推广的函数的特例.

(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

南昌市高中新课程方案试验高三复习训练题

数学(二)(函数(一))参考答案

二〇〇六年七月

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

A

D

B

B

C

B

D

C

A

B

B

二、填空题

(13).2;  (14). -2 ;(15). (-∞‚1)∪(3,+∞) ;(16). ①④⑤

三、解答题

17证明:任取x1,x2R,且-<x1<x2<+

f(x1)-f(x2)=(1-2x31)-(1-2x32)=2(x32-x13)=2(x2-x1)(x22+x1x2+x21)=2(x2-x1)[(x1+x2)2+x12] ∵x2>x1∴x0-x1>0,又(x1+x22+x12>0, ∴f(x1)-f(x2)>0即f(x1)>f(x2)故f(x)=1-2x3在(-,+)上为单调减函数。

或利用导数来证明(略)

18. : (1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.

∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.

即2ax+a+b=2x,所以,∴f(x)=x2-x+1.

(2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1,1]上恒成立.

设g(x)= x2-3x+1-m,其图象的对称轴为直线x=,所以g(x) 在[-1,1]上递减.

故只需g(1)>0,即12-3×1+1-m>0,解得m<-1.    

19.解:(1)将

(2)不等式即为

①当

②当

.

20.解:(1)设商品现在定价a元,卖出的数量为b个。

由题设:当价格上涨x%时,销售总额为y=a(1+x%)b(1-mx%),

,(0<x<),

取m=得:y=,当x=50时,ymax=ab,

即:该商品的价格上涨50%时,销售总金额最大。

(2)二次函数,在上递增,在上递减,

适当地涨价能使销售总金额增加,即 在(0,)内存在一个区间,使函数y在此区间上是增函数,所以  , 解得,即所求的取值范围是(0,1).

21解:(Ⅰ)因为对任意xRf(f(x)-x2 + x)=f(x)- x2 +x

所以f(f(2)- 22+2)=f(2)-22+2.

又由f(2)=3,得f(3-22+2)-3-22+2,即f(1)=1.

f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.

(Ⅱ)因为对任意xRf(f(x))-x2 +x)=f(x)-x2 +x.

又因为有且只有一个实数x0,使得f(x0)- x0.所以对任意xεRf(x)-x2 +x= x0.

在上式中令x= x0,有f(x0)-x + x0= x0,

又因为f(x0)- x0,所以x0x=0,故x0=0或x0=1.

x0=0,则f(x)- x2 +x=0,即f(x)= x2x.

但方程x2x=x有两上不同实根,与题设条件矛质,故x20.

x2=1,则有f(x)-x2 +x=1,即f(x)= x2x+1.易验证该函数满足题设条件.

综上,所求函数为f(x)= x2x+1(xR

 22.解:(1)易知,时,

(2)是偶函数。易知,该函数在上是减函数,在上是增函数; 则该函数在上是减函数,在上是增函数。

(3)推广:函数

为奇数时,是减函数;是增函数。      

 是增函数;是减函数。

为偶数时,是减函数;是增函数。  是减函数;是增函数。

(4)(理科生做)

时,

    ∴是减函数;是增函数。

    ∵

∴函数在区间[,2]上的最大值为,最小值为