绝密★启用前
2003年普通高校招生数学(理)统一考试(全国卷)
(理工农医类)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知 ( )
A. B. C. D.
2.圆锥曲线 ( )
A. B. C. D.
3.设函数 ( )
A.(-1,1) B.(-1,+)
C. D.
4.函数的最大值为 ( )
A. B. C. D.2
5.已知圆的弦长为时,则a= ( )
A. B. C. D.
6.已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是( )
A. B. C. D.
7.已知方程的四个根组成的一个首项为的等差数列,则
( )
A.1 B. C. D.
8.已知双曲线中心在原点且一个焦点为M、N两点,MN中点的横坐标为则此双曲线的方程是 ( )
A. B.
C. D.
9.函数 ( )
A. B.
C. D.
10.已知长方形的四个项点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射解等于反射角),设P4坐标为(的取值范围是 ( )
A. B. C. D.
11. ( )
A.3 B. C. D.6
12.一个四面体的所有棱长都为,四个项点在同一球面上,则此球的表面积为 ( )
A.3 B.4 C.3 D.6
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.
13.展开式中的系数是 .
14.使成立的的取值范围是 .
15.如图,一个地区分为5个行政区域,
现给地图着色,要求相邻区域不得
使用同一颜色,现有4种颜色可
供选择,则不同的着色方法共有
种.(以数字作答)
16.下列五个正方体图形中,是正方体的一条对角线,点M、N、P分别为具所在棱的中点,能得出⊥面MNP的图形的序号是 .(写出所有符合要求的图形序号)
三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤.
17.(本小题满分12分)
已知复数z的辐角为60°,且是和的等比中项. 求.
18.(本小题满分12分)
如图,在直三棱柱ABC—A1B1C1中,底面是等腰直角三形,∠ACB=90°,侧棱AA1=2,D、E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.
(Ⅰ)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);
(Ⅱ)求点A1到平面AED的距离.
19.(本小题满分12分)
已知 设
P:函数在R上单调递减.
Q:不等式的解集为R,如果P和Q有且仅有一个正确,求的取值范围.
20.(本小题满分12分)
在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大. 问几小时后该城市开始受到台风的侵袭?
21.(本小题满分14分)
已知常数在矩形ABCD中,AB=4,BC=4,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.
22.(本小题满分12分,附加题4分)
(Ⅰ)设中所有的数从小到大排列成的数列,
即
将数列各项按照上小下大,左小右大的原则写成如下的三角形数表:
3
5 6
9 10 12
— — — —
— — — — —
(i)写出这个三角形数表的第四行、第五行各数; (i i)求.
(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)
设中所有的数都是从小到大排列成的数列,已知